Skip to main content

Security in RFID Networks and Communications

  • Chapter
Wireless Network Security

Abstract

Radio frequency identification (RFID) networks are an emerging type of network that is posed to play an important role in the Internet-of-Things (IoT). One of the most critical issues facing RFID networks is that of security. Unlike conventional networks, RFID networks are characterized by the use of computationally weak RFID tags. These tags come with even more stringent resource constraints than the sensors used in sensor networks. In this chapter, we study the security aspects of RFID networks and communications. We begin by introducing the main security threats, followed by a discussion of various security mechanisms used to protect RFID networks. We conclude by studying the security mechanism of an actual large scale RFID deployment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gershenfeld N, Krikorian R, Cohen D (2004) The Internet of Things. Scientific American 291: 76–81.

    Article  Google Scholar 

  2. Koscher K, Juels A, Kohno T, Brajkovic V (2009) EPC RFID Tags in Security Applications: Passport Cards, Enhanced Drivers Licenses, and Beyond. In Proceedings of the 2009 ACM Conference on Computer and Communications Security (CCS’09), pp. 33–42.

    Google Scholar 

  3. Kargoth G, Moskowitz P A (2005) Disabling RFID tags with visible confirmation: clipped tags are silenced. In Proceedings of the 2005 ACM workshop on Privacy in the electronic society (WPES’05), pp. 27–30.

    Google Scholar 

  4. Moskowitz P A, Lauris A, Morris S (2007) A Privacy-Enhancing Radio Frequency Identification Tag: Implementation of the Clipped Tag. In Proceedings of the 2007 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom’07), pp. 348–351.

    Google Scholar 

  5. Juels A, Rivest R, Szydlo M (2003) The Blocker Tag: Selective Blocking of RFID Tags for Consumer Privacy. In Proceedings of the 2003 ACM Conference on Computer and Communication Security (CCS’03), pp. 103–111.

    Google Scholar 

  6. Floerkemeier C, Roland S, Marc L (2004) Scanning with a Purpose-Supporting the Fair Information Principles in RFID Protocols. International Symposium on Ubiquitous Computing Systems.

    Google Scholar 

  7. Rieback M R, Crispo B, Tanenbaum A S (2005) RFID Guardian: A Battery-Powered Mobile Device for RFID Privacy Management. Australasian Conference on Information Security and Privacy.

    Google Scholar 

  8. Juels A, Ravikanth P (2003) Squealing Euros Privacy Protection in RFIDEnabled Banknotes. Financial Cryptography and Data Security, 2742: 103–121.

    Google Scholar 

  9. Cai S, Li Y, Li T, Deng R H, Yao H (2010) Achieving High Security and Efficiency in RFID-tagged Supply Chains. International Journal of Applied Cryptography 2(1): 3–12.

    Article  MathSciNet  MATH  Google Scholar 

  10. Avoine G (2011) RFID Security & Privacy Lounge. http://www.avoine.net/ rfid/. Accessed 14 June, 2011.

    Google Scholar 

  11. Alomair B, Poovendran R (2010) Privacy versus Scalability in Radio Frequency Identification Systems. Computer Communication, Elsevier, 33(18): 2155–2163.

    Article  Google Scholar 

  12. Tsudik G (2006) YA-TRAP: Yet Another Trivial RFID Authentication Protocol. International Conference on Pervasive Computing and Communication.

    Google Scholar 

  13. Chatmon C, Tri van L, Burmester M (2006) Secure Anonymous RFID Authentication Protocols. Florida State University Technical Report. http:// www.cs.fsu.edu/~burmeste/TR-060112.pdf. Accessed 9 December, 2010.

    Google Scholar 

  14. Tsudik G (2007) A Family of Dunces: Trivial RFID Identification and Authentication Protocols. In Proceedings of the 7th International Conference on Privacy Enhancing Technologies (PET’07), pp. 45–61.

    Google Scholar 

  15. Hopper N J, Blum M (2001) “Secure Human Identification Protocols.” International Conference on Theory and Application of Cryptology and Information Security (ASIACRYPT).

    Google Scholar 

  16. Juels A, Weis S (2005) Authenticating Pervasive Devices with Human Protocols. Advances in Cryptology (CRYPTO).

    Google Scholar 

  17. Piramuthu S (2006) HB and Related Lightweight Authentication Protocols for Secure RFID Tag/Reader Authentication. Collaborative Electronic Commerce Technology and Research.

    Google Scholar 

  18. Holcom D, Burleson W, Fu K (2007). Initial SRAM state as a Fingerprint and Source of True Random Numbers for RFID Tags. Conference on RFID Security.

    Google Scholar 

  19. Melia-Seguil J, Garcia-Alfaro J, Herrera-Joancomarti J (2010) Analysis and improvement of a pseudorandom number generator for EPC Gen2 tags. International Workshop on Lightweight Cryptography for Resource-Constrained Devices.

    Google Scholar 

  20. Peris-Lopez P, Millan E S, van der Lubbe JCA, Entrena L A (2010) Cryptographically secure pseudo-random bit generator for RFID tags. International Conference for Internet Technology and Secured Transactions.

    Google Scholar 

  21. Tan C C, Sheng B, Li Q (2010) Efficient techniques for monitoring missing RFID tags. IEEE Transactions on Wireless Communication 9(6): 1882–1889.

    Article  Google Scholar 

  22. Tan C C, Sheng B, Li Q (2008) Secure and Serverless RFID Authentication and Search Protocols. IEEE Transactions on Wireless Communication 7(4): 1400–1407.

    Article  Google Scholar 

  23. Hancke G P, Kuhn M (2005) An RFID Distance Bounding Protocol. Conference on Security and Privacy for Emerging Areas in Communication Networks.

    Google Scholar 

  24. Avoine G, Muhammed A B, Suleyman K, Cédric L, Benjamin M (2010) A Framework for Analyzing RFID Distance Bounding Protocols. J. Comput. Secur. 19(2): 289–317.

    Google Scholar 

  25. Kim C H, Avoine G (2009) RFID Distance Bounding Protocol with Mixed Challenges to Prevent Relay Attacks. International Conference on Cryptology And Network Security.

    Google Scholar 

  26. Capkun S, El Defrawy K, Tsudik G (2010) GDB: Group Distance Bounding Protocols. arXiv.org, http://arxiv.org/abs/1011.5295. Accessed 15 January, 2011.

    Google Scholar 

  27. Bolotnyy L, Gabriel R (2009) Generalized “Yoking-Proofs” and Inter-tag Communication. In Development and Implementation of RFID Technology. I-Tech Education and Publishing.

    Google Scholar 

  28. Juels A (2004) “Yoking-Proofs” for RFID Tags. International Workshop on Pervasive Computing and Communication Security.

    Google Scholar 

  29. Burmester M, de Medeiros B, Motta R (2008) Provably Secure Grouping-Proofs for RFID Tags. Smart Card Research and Advanced Applications (CARDIS).

    Google Scholar 

  30. Garcia F, Koning G G, Muijrers R, Rossum P, Verdult R, Schreur R W, Jacobs B (2008) Dismantling MIFARE Classic. European Symposium on Research in Computer Security (ESORICS).

    Google Scholar 

  31. Kasper T, Silbermann M, Paar C (2010) All You Can Eat or Breaking a Real-World Contactless Payment System. Financial Cryptography and Data Security. 6052: 343–350.

    Article  Google Scholar 

  32. Nohl K, Evans D, Starbug, Plotz H (2008) Reverse-Engineering a Cryptographic RFID Tag. USENIX Security Symposium.

    Google Scholar 

  33. International Civil Aviation Organization (2009). Doc 9303 Part 1 Vol 1 and 2. http://www2.icao.int/en/MRTD/Pages/Downloads.aspx. Accessed 15 January 2011. Accessed 15 January, 2011.

    Google Scholar 

  34. Chothia T, Smirnov V (2010) A Traceability Attack against e-Passports. Financial Cryptography and Data Security, 6052: 20–34.

    Article  Google Scholar 

  35. Juels A, Molnar D, Wagner D (2005) Security and Privacy Issues in Epassports. Conference on Security and Privacy for Emerging Areas in Communication Networks.

    Google Scholar 

  36. Avoine G, Kassem K, Jean-Jacques Q (2008) ePassport: Securing International Contacts with Contactless Chips. Financial Cryptography and Data Security, 5143: 141–155.

    Article  Google Scholar 

  37. Liu Y, Kasper T, Lemke-Rust K, Paar C (2007) E-Passport: Cracking Basic Access Control Keys. OTM confederated international conference on the move to meaningful Internet systems: CoopIS, DOA, ODBASE, GADA, and IS — Volume Part II.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tan, C.C., Wu, J. (2013). Security in RFID Networks and Communications. In: Wireless Network Security. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36511-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36511-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36510-2

  • Online ISBN: 978-3-642-36511-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics