Skip to main content

Temporal Motifs

  • Chapter
  • First Online:
Temporal Networks

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

We discuss the temporal motifs approach that is aimed at detecting significant, intrinsically dynamic, mesoscopic structures and patterns in temporal networks, which cannot be seen in static or aggregated networks. Such patterns involve several nodes and their timed contacts. The approach consists of three phases: (1) identifying temporal subgraphs, (2) assigning the subgraphs to equivalence classes, and (3) assessing the relevance, surprise and significance of class-wise counts against some reference. We discuss these phases in detail, and apply the presented method to a temporal network of mobile telephone calls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The configuration model is a random network with the same degree sequence as the empirical network.

  2. 2.

    A graph G = (V, L) is connected iff there is a path between any two nodes, or equivalently when | L | ≥ 2, iff there is a path between any two edges. A subgraph G′ ⊆ G is induced if all nodes v i , v j  ∈ G′ that are adjacent in G are also adjacent in G′.

  3. 3.

    Two graphs G 1 and G 2 are isomorphic if there is a bijection σ : V 1 → V 2 of node labels such that σ(L 1) = L 2.

  4. 4.

    Multigraphs are graphs where multiple edges between vertices are allowed.

  5. 5.

    http://www.tcs.hut.fi/Software/bliss/

  6. 6.

    http://cs.anu.edu.au/~bdm/nauty/

References

  1. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  ADS  Google Scholar 

  2. Ciriello, G., Guerra, C.: A review on models and algorithms for motif discovery in protein-protein interaction networks. Brief. Funct. Genomics Proteomics 7(2), 147–156 (2008)

    Article  Google Scholar 

  3. Milo, R.: Superfamilies of evolved and designed networks. Science 303(5663), 1538–1542 (2004)

    Article  ADS  Google Scholar 

  4. Artzy-Randrup, Y., Fleishman, S.J., Ben-Tal, N., Stone, L.: Comment on “Network motifs: simple building blocks of complex networks” and “Superfamilies of evolved and designed networks”. Science 305(5687), 1107 (2004)

    Article  Google Scholar 

  5. Kovanen, L., Karsai, M., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs in time-dependent networks. J. Stat. Mech. Theor. Exp. 2011(11), P11005 + (2011)

    Google Scholar 

  6. Zhao, Q., Tian, Y., He, Q., Oliver, N., Jin, R., Lee, W.-C.: Communication motifs: a tool to characterize social communications. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 1645–1648. ACM, New York (2010)

    Google Scholar 

  7. Bajardi, P., Barrat, A., Natale, F., Savini, L., Colizza, V.: Dynamical patterns of cattle trade movements. PLoS ONE 6(5), e19869 + (2011)

    Google Scholar 

  8. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Braha, D., Bar-Yam, Y.: Time-Dependent complex networks: dynamic centrality, dynamic motifs, and cycles of social interaction. In: Gross, T., Sayama, H. (eds.) Adaptive Networks: Theory, Models and Applications. Springer Studies on Complexity, pp. 39–50. Springer, Berlin (2009)

    Google Scholar 

  10. Schramm, L., Martins, V.V., Jin, Y., Sendhoff, B.: Analysis of gene regulatory network motifs in evolutionary development of multicellular organisms. In: Proceedings of the 12th International Conference on the Synthesis and Simulation of Living Systems (ALife XII), pp. 133–140. MIT Press, Cambridge, MA (2010)

    Google Scholar 

  11. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse graphs. In: Applegate, D., Brodal, G.S., Panario, D., Sedgewick, R. (eds.) Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and the Fourth Workshop on Analytic Algorithms and Combinatorics, pp. 135–149. SIAM, Philadelphia (2007)

    Google Scholar 

  12. McKay, B.D.: Practical graph isomorphism. Congr. Numer. 30, 45–87 (1981)

    MathSciNet  Google Scholar 

  13. Gotelli, N.J.: Research frontiers in null model analysis. Global Ecol. Biogeogr. 10(4), 337–343 (2001)

    Article  Google Scholar 

  14. Fox, J.: Why ecologists should refight the ‘null model wars’, Oikos Blog, http://oikosjournal.wordpress.com/2011/06/01/why-ecologists-should-refight-the-null-model-wars/ (2011). Acc-essed 2 Sept 2012

  15. Bar-Joseph, Z., Gitter, A., Simon, I.: Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet. 13, 552–564 (2012)

    Article  Google Scholar 

  16. Jin, R., et al.: Identifying dynamic network modules with temporal and spatial constraints. Pac. Symp. Biocomput. 14, 203–214 (2009)

    Google Scholar 

  17. Waters, J.S., Fewell, J.H.: Information processing in social insect networks. PLoS ONE 7(7), e40337 (2012)

    Article  ADS  Google Scholar 

  18. Blonder, B., Wey, T. W., Dornhaus, A., James, R., Sih, A.: Temporal dynamics and network analysis. Methods Ecol. Evol. 3(6), 958–972 (2012)

    Article  Google Scholar 

  19. Cattuto, C., et al.: Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS ONE 5(7), e11596 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the EU 7th Framework Program’s FET-Open to ICTeCollective, project no. 238597, and support by the Academy of Finland to the project “Temporal networks of human interactions”, no. 260427. Lauri Kovanen is also supported by the doctoral program Brain & Mind.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jari Saramäki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kovanen, L., Karsai, M., Kaski, K., Kertész, J., Saramäki, J. (2013). Temporal Motifs. In: Holme, P., Saramäki, J. (eds) Temporal Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36461-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36461-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36460-0

  • Online ISBN: 978-3-642-36461-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics