Skip to main content

An Introduction to the Theory of Viscosity Solutions for First-Order Hamilton–Jacobi Equations and Applications

  • Chapter
  • First Online:
Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2074))

Abstract

In this course, we first present an elementary introduction to the concept of viscosity solutions for first-order Hamilton–Jacobi Equations: definition, stability and comparison results (in the continuous and discontinuous frameworks), boundary conditions in the viscosity sense, Perron’s method, Barron–Jensen solutions etc. We use a running example on exit time control problems to illustrate the different notions and results. In a second part, we consider the large time behavior of periodic solutions of Hamilton–Jacobi Equations: we describe recents results obtained by using partial differential equations type arguments. This part is complementary of the course of H. Ishii which presents the dynamical system approach (“weak KAM approach”).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we use the notation Du for the full gradient of u in space and time but, in general, we will use it for the gradient in space of u.

  2. 2.

    Here we have also used a less important (but simplifying) property, namely the commutation with constants: for any \(c\,\in \,\mathbb{R}\), S, x, t and for any function u( ⋅), G(S, x, t, u( ⋅) + c) = G(S, x, t, u( ⋅)) + c.

  3. 3.

    In Biton [19], a non-trivial counterexample to the uniqueness for (17) is given in a situation where the Cauchy–Lipschitz Theorem cannot be applied to (18).

  4. 4.

    This is a key point: the compactness of the domain (periodicity) plays a crucial role here since local uniform convergence is the same as global uniform convergence.

References

  1. L. Alvarez, F. Guichard, P.L. Lions, J.M. Morel, Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123(3), 199–257 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Bardi, I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations (Birkhäuser, Boston, 1997)

    Book  MATH  Google Scholar 

  3. M. Bardi, M.G. Crandall, L.C. Evans, H.M. Soner, P.E. Souganidis, Viscosity Solutions and Applications, ed. by I. Capuzzo Dolcetta, P.L. Lions. Lecture Notes in Mathematics, vol. 1660 (Springer, Berlin, 1997), x + 259 pp

    Google Scholar 

  4. G. Barles, Discontinuous viscosity solutions of first order Hamilton-Jacobi equations: a guided visit. Nonlinear Anal. TMA 20(9), 1123–1134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi Mathématiques & Applications (Berlin), vol. 17 (Springer, Paris, 1994)

    Google Scholar 

  6. G. Barles, Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications. J. Differ. Equ. 154, 191–224 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Barles, H. Mitake, A PDE approach to large-time asymptotics for boundary-value problems for nonconvex Hamilton-Jacobi equations. Commun. Partial Differ. Equ. 37(1), 136–168 (2012). doi:10.1080/03605302.2011.553645

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Barles, B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems. Model. Math. Anal. Numer. 21(4), 557–579 (1987)

    MathSciNet  MATH  Google Scholar 

  9. G. Barles, B. Perthame, Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim. 26, 1133–1148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Barles, B. Perthame, Comparison principle for Dirichlet type Hamilton-Jacobi Equations and singular perturbations of degenerated elliptic equations. Appl. Math. Optim. 21, 21–44 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Barles, J.-M. Roquejoffre, Ergodic type problems and large time behaviour of unbounded solutions of Hamilton-Jacobi equations. Commun. Partial Differ. Equ. 31(7–9), 1209–1225 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Barles, E. Rouy, A strong comparison result for the Bellman equation arising in stochastic exit time control problems and its applications. Commun. Partial Differ. Equ. 23(11 & 12), 1995–2033 (1998)

    MathSciNet  MATH  Google Scholar 

  13. G. Barles, P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4, 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  14. G. Barles, P.E. Souganidis, A new approach to front propagation problems: theory and applications. Arch. Ration. Mech. Anal. 141, 237–296 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Barles, P.E. Souganidis, On the large time behavior of solutions of Hamilton-Jacobi equations. SIAM J. Math. Anal. 31(4), 925–939 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Barles, A. Tourin, Commutation properties of semigroups for first-order Hamilton-Jacobi equations and application to multi-time equations. Indiana Univ. Math. J. 50(4), 1523–1544 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. E.N. Barron, R. Jensen, Semicontinuous viscosity solutions of Hamilton-Jacobi Equations with convex hamiltonians. Commun. Partial Differ. Equ. 15(12), 1713–1740 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. E.N. Barron, R. Jensen, Optimal control and semicontinuous viscosity solutions. Proc. Am. Math. Soc. 113, 49–79 (1991)

    Article  MathSciNet  Google Scholar 

  19. S. Biton, Nonlinear monotone semigroups and viscosity solutions. Ann. Inst. Henri Poincaré Anal. Non Linéaire 18(3), 383–402 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Cardin, C. Viterbo, Commuting Hamiltonians and Hamilton-Jacobi multi-time equations. Duke Math. J. 144(2), 235–284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. M.G. Crandall, L.C. Evans, P.L, Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 282, 487–502 (1984)

    Google Scholar 

  22. M.G. Crandall, P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. M.G. Crandall, H. Ishii, P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. AMS 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Davini, A. Siconolfi, A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations. SIAM J. Math. Anal. 38(2), 478–502 (2006)

    Article  MathSciNet  Google Scholar 

  25. A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I Math. 327(3), 267–270 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. W.H Fleming, H.M. Soner, Controlled Markov Processes and Viscosity Solutions. Applications of Mathematics (Springer, New-York, 1993)

    Google Scholar 

  27. N. Ichihara, H. Ishii, Asymptotic solutions of Hamilton-Jacobi equations with semi-periodic Hamiltonians. Commun. Partial Differ. Equ. 33(4–6), 784–807 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. N. Ichihara, H. Ishii, The large-time behavior of solutions of Hamilton-Jacobi equations on the real line. Methods Appl. Anal. 15(2), 223–242 (2008)

    MathSciNet  MATH  Google Scholar 

  29. N. Ichihara, H. Ishii, Long-time behavior of solutions of Hamilton-Jacobi equations with convex and coercive Hamiltonians. Arch. Ration. Mech. Anal. 194(2), 383–419 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets. Bull. Faculty Sci. Eng. Chuo Univ. 28, 33–77 (1985)

    Google Scholar 

  31. H. Ishii, Perron’s method for Hamilton-Jacobi equations. Duke Math. J. 55, 369–384 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Ishii, A simple, direct proof of uniqueness for solutions of Hamilton-Jacobi equations of eikonal type. Proc. Am. Math. Soc. 100, 247–251 (1987)

    Article  MATH  Google Scholar 

  33. H. Ishii, Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean n space. Ann. Inst. Henri Poincaré Anal. Non Linéaire 25(2), 231–266 (2008)

    Article  MATH  Google Scholar 

  34. H. Ishii, Fully nonlinear oblique derivative problems for nonlinear second-order elliptic PDE’s. Duke Math. J. 62, 663–691 (1991)

    Article  MathSciNet  Google Scholar 

  35. J.M. Lasry, P.L. Lions, A remark on regularization in Hilbert spaces. Isr. J. Math. 55, 257–266 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  36. P.L. Lions, Generalized Solutions of Hamilton-Jacobi Equations. Research Notes in Mathematics, vol. 69 (Pitman Advanced Publishing Program, Boston, 1982)

    Google Scholar 

  37. P.-L. Lions, Neumann type boundary conditions for Hamilton-Jacobi equations. Duke Math. J. 52(4), 793–820 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. H. Mitake, Asymptotic solutions of Hamilton-Jacobi equations with state constraints. Appl. Math. Optim. 58(3), 393–410 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. H. Mitake, The large-time behavior of solutions of the Cauchy-Dirichlet problem for Hamilton-Jacobi equations. Nonlinear Differ. Equ. Appl. 15(3), 347–362 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. H. Mitake, Large time behavior of solutions of Hamilton-Jacobi equations with periodic boundary data. Nonlinear Anal. 71(11), 5392–5405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Motta, F. Rampazzo, Nonsmooth multi-time Hamilton-Jacobi systems. Indiana Univ. Math. J. 55(5), 1573–1614 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. G. Namah, J.-M. Roquejoffre, Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations. Commun. Partial Differ. Equ. 24(5–6), 883–893 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. J.-M. Roquejoffre, Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations. J. Math. Pures Appl. (9) 80(1), 85–104 (2001)

    Google Scholar 

  44. H.M. Soner, Optimal control problems with state-space constraints. SIAM J. Control Optim. 24, 552–562, 1110–1122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Barles .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barles, G. (2013). An Introduction to the Theory of Viscosity Solutions for First-Order Hamilton–Jacobi Equations and Applications. In: Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications. Lecture Notes in Mathematics(), vol 2074. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36433-4_2

Download citation

Publish with us

Policies and ethics