Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2074))

Abstract

Mean field type models describing the limiting behavior of stochastic differential game problems as the number of players tends to + , have been recently introduced by J-M. Lasry and P-L. Lions. They may lead to systems of evolutive partial differential equations coupling a forward Bellman equation and a backward Fokker–Planck equation. The forward-backward structure is an important feature of this system, which makes it necessary to design new strategies for mathematical analysis and numerical approximation. In this survey, several aspects of a finite difference method used to approximate the previously mentioned system of PDEs are discussed, including: existence and uniqueness properties, a priori bounds on the solutions of the discrete schemes, convergence, and algorithms for solving the resulting nonlinear systems of equations. Some numerical experiments are presented. Finally, the optimal planning problem is considered, i.e. the problem in which the positions of a very large number of identical rational agents, with a common value function, evolve from a given initial spatial density to a desired target density at the final horizon time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Achdou, F. Camilli, I. Capuzzo-Dolcetta, Mean field games: convergence of a finite difference method (2012) (submitted)

    Google Scholar 

  2. Y. Achdou, F. Camilli, I. Capuzzo Dolcetta, Mean field games: numerical methods for the planning problem. SIAM J. Control Optim. 50(1), 77–109 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Achdou, I. Capuzzo-Dolcetta, Mean field games: numerical methods. SIAM J. Numer. Anal. 48(3), 1136–1162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Y. Achdou, V. Perez, Iterative strategies for solving linearized discrete mean field games. Netw. Heterogeneous Media 7(2), 197–217 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. J.-P. Aubin, Applied Functional Analysis. Pure and Applied Mathematics (New York), 2nd edn. (Wiley, New York, 2000). With exercises by Bernard Cornet and Jean-Michel Lasry, Translated from the French by Carole Labrousse

    Google Scholar 

  6. V. Barbu, Th. Precupanu, Convexity and Optimization in Banach Spaces. Mathematics and Its Applications (East European Series), vol. 10, Romanian edn. (D. Reidel Publishing Co., Dordrecht, 1986)

    Google Scholar 

  7. M. Bardi, Explicit solutions of some nonlinear quadratic mean field games. Technical Report 2, 2012

    Google Scholar 

  8. M. Bardi, I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Systems & Control: Foundations & Applications (Birkhäuser Boston Inc., Boston, 1997). With appendices by M. Falcone and P. Soravia

    Google Scholar 

  9. J.-D. Benamou, Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. J.-D. Benamou, Y. Brenier, Mixed L 2-Wasserstein optimal mapping between prescribed density functions. J. Optim. Theory Appl. 111(2), 255–271 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.-D. Benamou, Y. Brenier, K. Guittet, The Monge-Kantorovitch mass transfer and its computational fluid mechanics formulation. Int. J. Numer. Methods Fluids 40(1–2), 21–30 (2002). ICFD Conference on Numerical Methods for Fluid Dynamics, Oxford, 2001

    Google Scholar 

  12. H. Brezis, in Analyse Fonctionnelle. Théorie et applications [Theory and applications]. Collection Mathématiques Appliquées pour la Maî trise. [Collection of Applied Mathematics for the Master’s Degree] (Masson, Paris, 1983)

    Google Scholar 

  13. F. Camilli, F.J. Silva, A semi-discrete approximation for a first order mean field games problem. Netw. Heterog. Media 7(2), 263–277 (2012). doi:10.3934/nhm.2012.7.263

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Cardaliaguet, Notes on mean field games. Preprint (2011)

    Google Scholar 

  15. P. Cardaliaguet, J-M. Lasry, P-L. Lions, A. Porretta, Long time average of mean field games. Netw. Heterogeneous Media 7(2), 279–301 (2012)

    Google Scholar 

  16. B. Cockburn, J. Qian, in Continuous Dependence Results for Hamilton-Jacobi Equations. Collected Lectures on the Preservation of Stability Under Discretization, Fort Collins, CO, 2001 (SIAM, Philadelphia, 2002), pp. 67–90

    Google Scholar 

  17. W.H. Fleming, H.M. Soner, Controlled Markov Processes and Viscosity Solutions, 2nd edn. Stochastic Modelling and Applied Probability, vol. 25 (Springer, New York, 2006)

    Google Scholar 

  18. D.A. Gomes, J. Mohr, R.R. Souza, Discrete time, finite state space mean field games. J. Math. Pures Appl. (9) 93(3), 308–328 (2010)

    Google Scholar 

  19. O. Guéant, Mean field games and applications to economics. Ph.D. thesis, Université Paris-Dauphine, 2009

    Google Scholar 

  20. O. Guéant, A reference case for mean field games models. J. Math. Pures Appl. (9), 92(3), 276–294 (2009)

    Google Scholar 

  21. O. Guéant, Mean field games equations with quadratic Hamiltonian: a specific approach. Math. Models Methods Appl. Sci. 22(9), 1250022, 37 (2011). doi:10.1142/S0218202512500224

    Google Scholar 

  22. O. Guéant, New numerical methods for mean field games with quadratic costs. Netw. Heterogeneous Media 7(2), 315–336 (2012)

    Article  MATH  Google Scholar 

  23. O. Guéant, J-M. Lasry, P-L. Lions, Mean Field Games and Applications. Paris-Princeton Lectures on Mathematical Finance, 2010. Lecture Notes in Mathematics, vol. 2003 (Springer, Berlin, 2011), pp. 205–266

    Google Scholar 

  24. A. Lachapelle, J. Salomon, G. Turinici, Computation of mean field equilibria in economics. Math. Models Methods Appl. Sci. 20(4), 567–588 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. J-M. Lasry, P-L. Lions, Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 (2006)

    Google Scholar 

  26. J-M. Lasry, P-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 (2006)

    Google Scholar 

  27. J-M. Lasry, P-L. Lions, Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Google Scholar 

  28. P-L. Lions, Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre. J. Analyse Math. 45, 234–254 (1985)

    Google Scholar 

  29. P-L. Lions, Cours du Collège de France (2007–2011), http://www.college-de-france.fr/default/EN/all/equ_der/

  30. T.A. Davis, Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Software 30(2), 196–199 (2004). doi:10.1145/992200.992206

    Google Scholar 

  31. H.A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MATH  Google Scholar 

  32. C. Villani, Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58 (American Mathematical Society, Providence, 2003)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by ANR grant ANR 12 MONU 013.

I would like to thank I. Capuzzo Dolcetta, F. Camilli and V. Pérez, the colleagues with whom I collaborated on the topic, O. Guéant for nice discussions, and finally P. Loreti and N. Tchou for the scientific organization of the CIME summer school.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Achdou .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Achdou, Y. (2013). Finite Difference Methods for Mean Field Games. In: Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications. Lecture Notes in Mathematics(), vol 2074. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36433-4_1

Download citation

Publish with us

Policies and ethics