Skip to main content

The Complex Monge–Ampère Equation in Kähler Geometry

  • Chapter
  • First Online:
Pluripotential Theory

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2075))

Abstract

We will discuss two main cases where the complex Monge–Ampère equation (CMA) is used in Käehler geometry: the Calabi–Yau theorem which boils down to solving nondegenerate CMA on a compact manifold without boundary and Donaldson’s problem of existence of geodesics in Mabuchi’s space of Käehler metrics which is equivalent to solving homogeneous CMA on a manifold with boundary. At first, we will introduce basic notions of Käehler geometry, then derive the equations corresponding to geometric problems, discuss the continuity method which reduces solving such an equation to a priori estimates, and present some of those estimates. We shall also briefly discuss such geometric problems as Käehler–Einstein metrics and more general metrics of constant scalar curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Aubin, Equations du type de Monge-Ampère sur les variétés Kähleriennes compactes. C. R. Acad. Sci. Paris 283, 119–121 (1976)

    MathSciNet  MATH  Google Scholar 

  2. T. Aubin, Réduction du cas positif de léquation de Monge-Ampère sur les variétés kählériennes compactes à la demonstration dune inégalité. J. Funct. Anal. 57, 143–153 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Bando, T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, in Algebraic Geometry, Sendai, 1985. Advanced Studies in Pure Mathematics, vol. 10 (North-Holland, Amsterdam, 1987), pp. 11–40

    Google Scholar 

  4. E. Bedford, M. Kalka, Foliations and complex Monge-Ampère equations. Commun. Pure Appl. Math. 30, 543–571 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Bedford, B.A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37, 1–44 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. R.J. Berman, S. Boucksom, V. Guedj, A. Zeriahi, A variational approach to complex Monge-Ampère equations [arXiv:0907.4490] (to appear in Publ. math. de)

    Google Scholar 

  7. B. Berndtsson, A Brunn-Minkowski type inequality for Fano manifolds and the Bando-Mabuchi uniqueness theorem [arXiv:1103.0923]

    Google Scholar 

  8. Z. Błocki, The complex Monge-Ampère operator in hyperconvex domains. Ann. Sc. Norm. Sup. Pisa 23, 721–747 (1996)

    MATH  Google Scholar 

  9. Z. Błocki, On the regularity of the complex Monge-Ampère operator, in Complex Geometric Analysis in Pohang, ed. by K.-T. Kim, S.G. Krantz. Contemporary Mathematics, vol. 222 (American Mathematical Society, Providence, 1999), pp. 181–189

    Google Scholar 

  10. Z. Błocki, Interior regularity of the complex Monge-Ampère equation in convex domains. Duke Math. J. 105, 167–181 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Z. Błocki, Regularity of the degenerate Monge-Ampère equation on compact Kähler manifolds. Math. Z. 244, 153–161 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Z. Błocki, Uniqueness and stability for the Monge-Ampère equation on compact Kähler manifolds. Indiana Univ. Math. J. 52, 1697–1702 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Z. Błocki, The Calabi-Yau theorem. Course given in Toulouse, January 2005, in Complex Monge-Ampe‘re Equations and Geodesics in the Space of Kähler Metrics, ed. by V. Guedj. Lecture Notes in Mathematics, vol. 2038 (Springer, Berlin, 2012), pp. 201–227

    Google Scholar 

  14. Z. Błocki, A gradient estimate in the Calabi-Yau theorem. Math. Ann. 344, 317–327 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Z. Błocki, On Geodesics in the Space of Kähler Metrics, in Advances in Geometric Analysis, ed. by S. Janeczko, J. Li, D. Phong, Adv. Lect. Math., vol. 21 (International Press, Boston, 2012), pp. 3–20

    Google Scholar 

  16. L. Caffarelli, J.J. Kohn, L. Nirenberg, J. Spruck, The Dirichlet problem for non-linear second order elliptic equations II: Complex Monge-Ampère, and uniformly elliptic equations. Commun. Pure Appl. Math. 38, 209–252 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Calabi, The space of Kähler metrics. Proceedings of the International Congress of Mathematicians, Amsterdam, 1954, vol. 2, pp. 206–207

    Google Scholar 

  18. X.X. Chen, The space of Kähler metrics. J. Differ. Geom. 56, 189-234 (2000)

    MATH  Google Scholar 

  19. X.X. Chen, G. Tian, Geometry of Kähler metrics and foliations by holomorphic discs. Publ. Math. IHES 107, 1–107 (2008)

    MathSciNet  MATH  Google Scholar 

  20. S.K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, in Northern California Symplectic Geometry Seminar. Am. Math. Soc. Transl. Ser. 2, vol. 196 (American Mathematical Society, Providence, 1999), pp. 13–33

    Google Scholar 

  21. S.K. Donaldson, Constant scalar curvature metrics on toric surfaces. GAFA 19, 83–136 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. L.C. Evans, Classical solutions of fully nonlinear, convex, second order elliptic equations. Commun. Pure Appl. Math. 25, 333–363 (1982)

    Article  Google Scholar 

  23. L.C. Evans, Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators. Trans. Am. Math. Soc. 275, 245–255 (1983)

    Article  Google Scholar 

  24. B. Gaveau, Méthodes de contrôle optimal en analyse complexe I. Résolution d’équations de Monge-Ampère. J. Funct. Anal. 25, 391–411 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. T.W. Gamelin, N. Sibony, Subharmonicity for uniform algebras. J. Funct. Anal. 35, 64–108 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Gilbarg, N.S. Trudinger, in Elliptic Partial Differential Equations of Second Order. Classics in Mathematics (Springer, Berlin, 1998)

    Google Scholar 

  27. B. Guan, The Dirichlet problem for complex Monge-Ampère equations and regularity of the pluri-complex Green function. Comm. Anal. Geom. 6, 687–703 (1998)

    MathSciNet  MATH  Google Scholar 

  28. D. Guan, On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles. Math. Res. Lett. 6, 547–555 (1999)

    MathSciNet  MATH  Google Scholar 

  29. P. Guan, A gradient estimate for complex Monge-Ampère equation. Preprint (2009)

    Google Scholar 

  30. A. Hanani, Equations du type de Monge-Ampère sur les variétés hermitiennes compactes. J. Funct. Anal. 137, 49–75 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. J.L. Kazdan, A remark on the proceding paper of Yau. Commun. Pure Appl. Math. 31, 413–414 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. N.V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations. Izv. Akad. Nauk SSSR 46, 487–523 (1982); English translation: Math. USSR Izv. 20, 459–492 (1983)

    Google Scholar 

  33. L Lempert, L. Vivas, Geodesics in the space of Kähler metrics [arXiv:1105.2188]

    Google Scholar 

  34. T. Mabuchi, K-energy maps integrating Futaki invariants. Tohoku Math. J. 38, 575–593 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. T. Mabuchi, Some symplectic geometry on compact Kähler manifolds. I. Osaka J. Math. 24, 227–252 (1987)

    MathSciNet  MATH  Google Scholar 

  36. Y. Matsushima, Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne. Nagoya Math. J. 11, 145–150 (1957)

    MathSciNet  MATH  Google Scholar 

  37. D.H. Phong, J. Sturm, Lectures on stability and constant scalar curvature, in Handbook of Geometric Analysis, vol. 3, Adv. Lect. Math., vol. 14 (International Press, Boston, 2010), pp. 357–436

    Google Scholar 

  38. F. Schulz, Über nichtlineare, konkave elliptische Differentialgleichungen. Math. Z. 191, 429–448 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Semmes, Complex Monge-Ampère and symplectic manifolds. Am. J. Math. 114, 495–550 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Y.-T. Siu, Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics, DMV Seminar, 8, Birkhäuser, 1987

    Google Scholar 

  41. G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101, 101–172 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  42. G. Tian, The K-energy on hypersurfaces and stability. Comm. Anal. Geom. 2, 239–265 (1994)

    MathSciNet  MATH  Google Scholar 

  43. G. Tian, Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 137, 1–37 (1997)

    Article  Google Scholar 

  44. G. Tian, Canonical Metrics in Kähler Geometry. Lectures in Mathematics (ETH Zurich, Birkhäuser, Zurich, 2000)

    Google Scholar 

  45. V. Tosatti, Kähler-Einstein metrics on Fano surfaces. Expo. Math. 30, 11–31 (2012) [arXiv:1010.1500]

    Article  MathSciNet  MATH  Google Scholar 

  46. N. Trudinger, Fully nonlinear, uniformly elliptic equations under natural structure conditions. Trans. Am. Math. Soc. 278, 751–769 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  47. S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  MATH  Google Scholar 

  48. S.-T. Yau, Calabi’s conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. USA 74, 1798–1799 (1977)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Błocki .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Błocki, Z. (2013). The Complex Monge–Ampère Equation in Kähler Geometry. In: Pluripotential Theory. Lecture Notes in Mathematics(), vol 2075. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36421-1_2

Download citation

Publish with us

Policies and ethics