Skip to main content

Measurement/Manipulation/Assembly of Carbon Nanotubes under FE-SEM/TEM

  • Chapter
Micro-Nanorobotic Manipulation Systems and Their Applications

Abstract

Nanofabrication as a key technology can improve the applications of nanotechnology. In recent years, CNTs have been proposed as a basic building block for a new generation of nanoelectronic and mechanical systems. Previous researches showed that CNTs can be used as linear [1] and rotational nanobearings[2], mass conveyors [3], field emitters [4, 5], AFM probes [6], nanotweezers [7], nanoposition sensors [8] and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cumings, J., Zettl, A.: Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000)

    Article  Google Scholar 

  2. Fennimore, A.M., Yuzvinsky, T.D., Han, W.Q., Fuhrer, M.S., Cumings, J., Zettl, A.: Rotational actuators based on carbon nanotubes. Nature 424, 408–410 (2003)

    Article  Google Scholar 

  3. Sazonova, V., Yaish, Y., Ustunel, H., Roundy, D., Arias, T.A., McEuen, P.L.: A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004)

    Article  Google Scholar 

  4. Rinzler, A.G., Hafner, J.H., Nikolaev, P., Lou, L., Kim, S.G., Tomanek, D., Nordlander, P., Colbert, D.T., Smalley, R.E.: Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550–1553 (1995)

    Article  Google Scholar 

  5. Saito, Y., Uemura, S., Hamaguchi, K.: Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn. J. Appl. Phys. 37, L346–L348 (1998)

    Google Scholar 

  6. Dai, H.J., Hafner, J.H., Rinzler, A.G., Colbert, D.T., Smalley, R.E.: Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147–150 (1996)

    Article  Google Scholar 

  7. Kim, P., Lieber, C.M.: Nanotube nanotweezers. Science 286, 2148–2150 (1999)

    Article  Google Scholar 

  8. Liu, P., Dong, L.X., Arai, F., Fukuda, T.: Nanotube multi-functional nanoposition sensors. J. Nanoeng. Nanosyst. 219, 23–27 (2005)

    Google Scholar 

  9. Liu, P., Arai, F., Dong, L.X., Fukuda, T., Noguchi, T., Tatenuma, K.: Field emission of individual carbon nanotubes and its improvement by decoration with ruthenium dioxide. J. Robo. Mech. 17, 475–482 (2005)

    Google Scholar 

  10. Lu, J.P.: Elastic Properties of Carbon Nanotubes and Nanoropes. Phys. Rev. Lett. 79, 1297–1300 (1997)

    Article  Google Scholar 

  11. Hernandez, E., Goze, C., Bernier, P., Rubio, A.: Elastic Properties of C and BxCxNx Composite Nanotubes. Phys. Rev. Lett. 80, 4502–4505 (1998)

    Article  Google Scholar 

  12. Lier, G.V., Alsenoy, C.V., Doren, V.V., Geerlings, P.: Ab Initio Study of the Elastic Properties of Single-Walled Carbon Nanotubes and Graphene. Chem. Phys. Lett. 326, 181–185 (2000)

    Article  Google Scholar 

  13. Poncharal, P., Wang, Z.L., Ugarte, D., de Heer, W.A.: Electrostatic Deflections and Electromechanical Resonaces of Carbon Nanotubes. Science 283, 1513–1516 (1999)

    Article  Google Scholar 

  14. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  15. Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes. Nature 381, 678–680 (1996)

    Article  Google Scholar 

  16. Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science 287, 637–640 (2000)

    Article  Google Scholar 

  17. Salvetat, J.P., Kulik, A.J.: Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes. Adv. Mater. 11, 161–165 (1999)

    Article  Google Scholar 

  18. Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013–14019 (1998)

    Article  Google Scholar 

  19. Salvetat, J.P., Briggs, G.A.D., Bonard, J.M., Bacsa, R.R., Kulik, A.J.: Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes. Phys. Rev. Lett. 82, 944–947 (1999)

    Article  Google Scholar 

  20. Yu, M.F., Files, B.S., Arepalli, S., Ruoff, R.S.: Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties. Phys. Rev. Lett. 84, 5552–5555 (2000)

    Article  Google Scholar 

  21. Johnston, B.G.: Guide to Stability Design Criteria for Metal Structures, pp. 64–74. John Wily & Sons (1976)

    Google Scholar 

  22. Koops, H.W.P., Kretz, J., Rudolph, M., Weber, M., Dahm, G., Lee, K.L.: Characterization and application of materials grown by electron-beam-induced deposition. Jpn. J. Appl. Phys. 33, 7099–7107 (1994)

    Article  Google Scholar 

  23. Matsui, S., Kaito, T., Fujita, J., Komuro, M., Kanda, K., Haruyama, Y.: Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition. J. Vac. Sci. Technol. B 18, 3181–3184 (2000)

    Article  Google Scholar 

  24. Koops, H.W.P., Kaya, A., Weber, M.: Fabrication and characterization of platinum nanocrystalline material grown by electron-beam induced deposition. J. Vac. Sci. Technol. B 13, 2400–2403 (1995)

    Article  Google Scholar 

  25. Weber, M., Rudolph, M., Kretz, J., Koops, H.W.P.: Electron-beam induced deposition for fabrication of vacuum field emitter devices. J. Vac. Sci. Technol. B 13, 461–464 (1995)

    Article  Google Scholar 

  26. Koops, H.W.P., Schössler, C., Kaya, A., Weber, M.: Conductive dots, wires, andsupertips for field electron emitters produced by electron-beam induced deposition on samples having increased temperature. J. Vac. Sci. Technol. B 14, 4105–4109 (1996)

    Article  Google Scholar 

  27. Dong, L.X., Arai, F., Fukuda, T.: Electron-beam-induced deposition with carbon nanotube emitters. Appl. Phys. Lett. 81, 1919–1921 (2002)

    Article  Google Scholar 

  28. Saito, Y., Uemura, S., Hamaguchi, K.: Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn. J. Appl. Phys. 37, L346–L348 (1998)

    Google Scholar 

  29. Lee, N.S., Chung, D.S., Han, I.T., Kang, J.H., et al.: Application of carbon nanotubes to field emission displays. Diamond Relat. Materials 10, 265–270 (2001)

    Article  Google Scholar 

  30. Rosen, R., Simendinger, W., Debbault, C., Simoda, H., Fleming, L., Stoner, B., Zhou, O.: Application of carbon nanotubes as electrodes in gas discharge tubes. Appl. Phys. Lett. 76, 1668–1670 (2000)

    Article  Google Scholar 

  31. Sugie, H., Tanemura, M., Filip, V., Lwata, K., Takahashi, K., Okuyama, F.: Carbon nanotubes as electron source in an X-ray tube. Appl. Phys. Lett. 78, 2578–2580 (2001)

    Article  Google Scholar 

  32. Dong, L.X., Arai, F., Fukuda, T.: Destructive constructions of nanostructures with carbon nanotubes through nanoroboticmanipulations. IEEE/ASME Trans. on Mechatronics 9, 350–357 (2004)

    Article  Google Scholar 

  33. Koops, H.W.P., Kretz, J., Weber, M.: Combined lithographies for the reduction of stitching errors in lithography. J. Vac. Sci. Technol. B 12, 3265–3269 (1994)

    Article  Google Scholar 

  34. Gortz, W., Kempf, B., Kretz, J.: Resolution enhanced scanning force microscopy measurements for characterizing dry etching methods applied to titanium masked InP. J. Vac. Sci. Technol. B 13, 34–39 (1995)

    Article  Google Scholar 

  35. White, V., et al.: Microfabrication of phase shifting zone plates for hard X-rays. Microelectronic Engineering 21, 99–102 (1993)

    Article  Google Scholar 

  36. Rangelow, I.W., Gotszalk, T., Abedinov, N., Grabiec, P., Edinger, K.: Thermal nano-probe. Microelectron. Engng. 57, 737–748 (2001)

    Article  Google Scholar 

  37. Arai, F., Liu, P., Dong, L.X., et al.: Electron-Beam-InducedDeposition of Conductive Nanostructures with Carbon Nanotube Emitters. In: Proc. of the 2003 3rd IEEE Int’l Conf. on Nanotechnology (IEEE-NANO 2003), San Francisco, U.S.A., Aug. 11-14, pp. 811–814 (2003)

    Google Scholar 

  38. Schossler, C., Urban, J., Koops, H.W.P.: Conductive supertips for scanning probe applications. J. Vac. Sci. Technol. B 15, 1535–1538 (1997)

    Article  Google Scholar 

  39. Floreani, F., Koops, H.W.P., Elsaber, W.: Concept of a miniaturized free-electron laser with field emission source. Nuclear Instruments and Methods in Physics Research A 483, 488–492 (2002)

    Article  Google Scholar 

  40. Koops, H.W.P., Kaya, A., Weber, M.: Fabrication and characterization of platinum nanocrystalline material grown by electron-beam induced deposition. J. Vac. Sci. Technol. B 13, 2400–2403 (1995)

    Article  Google Scholar 

  41. Weber, M., Rudolph, M., Kretz, J., Koops, H.W.P.: Electron-beam induced deposition for fabrication of vacuum field emitter devices. J. Vac. Sci. Technol. B 13, 461–464 (1995)

    Article  Google Scholar 

  42. Koops, H.W.P., Weiel, R., Kern, D.P., Baum, T.H.: High-resolution electron-beam induced deposition. J. Vac. Sci. Technol. B 6, 477–481 (1988)

    Article  Google Scholar 

  43. Matsui, S., Mori, K.: New selective deposition technology by electron beam induced surface reaction. J. Vac. Sci. Technol. B 4, 299–304 (1986)

    Article  Google Scholar 

  44. Weber, M., Koops, H.W.P., Rudolph, M., Kretz, J., Schmidt, G.: New compound quantum dot materials produced by electron-beam induced deposition. J. Vac. Sci. Technol. B 13, 1364–1368 (1995)

    Article  Google Scholar 

  45. Matsui, S., Kaito, T., Fujita, J., Komuro, M., Kanda, K., Haruyama, Y.: Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition. J. Vac. Sci. Technol. B 18, 3181–3184 (2000)

    Article  Google Scholar 

  46. Brodie, I., Westerberg, E.R., Cone, D.R., Muray, J.J., Williams, N., Gasiorek, L.: A Multiple-Electron-Beam Exposure System for High-Throughput, Direct-Write SubmicrometerLithography. IEEE Trans. Electron. Devices 28, 1422–1428 (1981)

    Article  Google Scholar 

  47. Choi, W.B., et al.: Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129–3131 (1999)

    Article  Google Scholar 

  48. Fan, S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., Dai, H.J.: Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512–514 (1999)

    Article  Google Scholar 

  49. Sohn, J.I., Lee, S., Song, Y.-H., Choi, S.-Y., Cho, K.-I., Nam, K.-S.: Patterned Selective Growth of Carbon Nanotubes and Large FieldEmission from Vertically Well-Aligned Carbon Nanotube Field Emitter Arrays. Appl. Phys. Lett. 78, 901–903 (2001)

    Article  Google Scholar 

  50. Dai, H.J., Franklin, N., Han, J.: Exploiting the Properties of CarbonNanotubes for Nanolithography. Appl. Phys. Lett. 73, 1508–1510 (1998)

    Article  Google Scholar 

  51. Okazaki, A., Kishida, T., Akita, S., Nishijima, H., Nakayama, Y.: Direct Nanolithography of Organic Polysilane Films UsingCarbon Nanotube Tips. Jpn. J. Appl. Phys. 39, 7067–7069 (2000)

    Article  Google Scholar 

  52. Good, R.H., Muller, E.W.: Handbuch der Physik, vol. 21, pp. 176–191 (1956)

    Google Scholar 

  53. Gomer, R.: Field emission, field ionization and field desorption. Surface Science 299/300, 129–152 (1994)

    Article  Google Scholar 

  54. Gomer, R.: Field emission and field ionization. Harvard University Press (1961)

    Google Scholar 

  55. Saito, Y., Hamaguchi, K., Hata, K., Tohji, K., Kasuya, A., Nishina, Y., Uchida, K., Tasaka, Y., Ikazaki, F., Yumura, M.: Field emission from carbon nanotubes: purified single-walled and multi-walled tubes. Ultramicroscopy 73, 1–6 (1998)

    Article  Google Scholar 

  56. Saito, Y., et al.: Conical beams from open nanotubes. Nature 389, 554–555 (1997)

    Article  Google Scholar 

  57. Saito, Y.: Field emission patterns from single-walled carbon nanotubes. Jpn. J. Appl. Phys. 36, L1340–L1342 (1997)

    Google Scholar 

  58. Zhu, W., Bower, C., Zhou, O., Kochanski, G., Jin, S.: Large current density from carbon nanotube field emitters. Appl. Phys. Lett. 75, 873–875 (1999)

    Article  Google Scholar 

  59. Saito, Y.: Field emission patterns from single-walled carbon nanotubes. Jpn. J. Appl. Phys. 36, L1340–L1342 (1997)

    Google Scholar 

  60. Dean, K.A., Chalamala, B.R.: Field emission microscopy of carbon nanotube caps. J. Appl. Phys. 85, 3832–3836 (1999)

    Article  Google Scholar 

  61. Lovall, D., Buss, M., Graugnard, E., Anders, R.P., Reifenberger, R.: Electron emission and structural characterization of a rope of single walled carbon nanotubes. Phys. Rev. B 61, 5683–5691 (2000)

    Article  Google Scholar 

  62. Zhong, Z., Wang, D., Cui, Y., Bockrath, M.W., Lieber, C.M.: Nanowire Crossbar arrays as address decoders for integrated nanosystems. Science 302, 1377–1379 (2003)

    Article  Google Scholar 

  63. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  64. Pan, Z.W., Dai, Z.R., Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001)

    Article  Google Scholar 

  65. Gao, P.X., Ding, Y., Mai, W., Hughes, W.L., Lao, C., Wang, Z.L.: Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309, 1700–1704 (2005)

    Article  Google Scholar 

  66. Dickey, E.C., Grimes, C.A., et al.: Visible photoluminescence from ruthenium-doped multiwall carbon nanotubes. Appl. Phys. Lett. 79, 4022–4024 (2001)

    Article  Google Scholar 

  67. Saito, Y., Uemura, S., Hamaguchi, K.: Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn. J. Appl. Phys. 37, L346–348 (1998)

    Google Scholar 

  68. Dong, L.X., Arai, F., Fukuda, T.: Electron-beam-induced deposition with carbon nanotube emitters. Appl. Phys. Lett. 81, 1919–1921 (2002)

    Article  Google Scholar 

  69. Liu, P., Dong, L.X., Arai, F., Fukuda, T.: Nanotube multi-functional nanoposition sensors. J. Nanoeng. Nanosyst. 219, 23–27 (2005)

    Google Scholar 

  70. Arai, F., Liu, P., Dong, L.X., Fukuda, T.: Field emission properties of individual carbon nanotubes in nanorobotic manipulation and electron-beam-induced deposition. J. Robotics and Mechatronics 16, 597–603 (2004)

    Google Scholar 

  71. Thong, J.T.L., Oon, C.H., Yeadon, M., Zhang, W.D.: Field-emission induced growth of nanowires. Appl. Phys. Lett. 81, 4823–4825 (2002)

    Article  Google Scholar 

  72. Wang, Y.G., et al.: In situ growth of nanowire on the tip of a carbon nanotube under strong electric field. Appl. Phys. Lett. 86(133103) (2005)

    Google Scholar 

  73. Tay, A.B.H., Thong, J.T.L.: High-resolution nanowire atomic force microscope probe grown by a field-emission induced process. Appl. Phys. Lett. 84, 5207–5209 (2004)

    Article  Google Scholar 

  74. Tay, A.B.H., Thong, J.T.L.: Fabrication of super-sharp nanowire atomic force microscope probes using a field emission induced growth technique. Rev. Sci. Instrum. 75, 3248–3255 (2004)

    Article  Google Scholar 

  75. Oon, C.H., Thong, J.T.L.: In situ nanowire growth for electrical interconnects. Nanotechnology 15, 687–691 (2004)

    Article  Google Scholar 

  76. Purcell, S.T., Vincent, P., Journet, C., Binh, T.V.: Hot nanotubes: stable heating of individual multiwall carbon nanotubes to 2000 K induced by the field-emission current. Phys. Rev. Lett. 88(105502) (2002)

    Google Scholar 

  77. Regan, B.C., Aloni, S., Ritchie, R.O., Dahmen, U., Zettl, A.: Carbon nanotubes as nanoscale mass conveyors. Nature 428, 924–927 (2004)

    Article  Google Scholar 

  78. Cumings, J., Collins, P.G., Zettl, A.: Peeling and sharpening multiwall nanotubes. Nature 406, 586 (2000)

    Article  Google Scholar 

  79. Li, J., Banhart, F.: The engingeering of hot carbon nanotubes with a focused electron beam. Nano Lett. 4, 1143–1146 (2004)

    Article  Google Scholar 

  80. Banhart, F., Li, J., Terrones, M.: Cutting single-walled carbon nanotubes with an electron beam: evidence for atom migration inside nanotubes. Small 1, 953–956 (2005)

    Article  Google Scholar 

  81. Fukuda, T., Arai, F., Dong, L.X.: Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations. Proc. IEEE 91, 1803–1818 (2003)

    Article  Google Scholar 

  82. Park, J.Y., Yaish, Y., Brink, M., Rosenblatt, S., McEuen, P.L.: Electrical cutting and nicking of carbon nanotubes using an atomic force microscope. Appl. Phys. Lett. 80, 4446–4448 (2002)

    Article  Google Scholar 

  83. Rubio, A., Apell, S.P., Venema, L.C., Dekker, C.: A mechanism for cutting carbon nanotubes with a scanning tunneling microscope. Eur. Phys. J. B 17, 301–308 (2000)

    Article  Google Scholar 

  84. Wei, B.W., D’arcy-Gall, J., Ajayan, P.M., Ramanath, G.: Tailoring structure and electrical properties of carbon nanotubes using kilo-electron-volt ions. Appl. Phys. Lett. 83, 3581–3583 (2003)

    Article  Google Scholar 

  85. Suzuki, S., Kanzaki, K., Homma, Y., Fukuba, S.: Low-acceleration-voltage electron irradiation damage in single-walled carbon nanotubes. Jpn. J. Appl. Phys. 43, L1118–L1120 (2004)

    Google Scholar 

  86. Yuzvinsky, T.D., Fennimore, A.M., Mickelson, W., Esquivias, C., Zettl, A.: Precision cutting of nanotubes with a low-energy electron beam. Appl. Phys. Lett. 86, 053109 (2005)

    Google Scholar 

  87. Smith, B.W., Luzzi, D.E.: Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 90, 3509–3515 (2001)

    Article  Google Scholar 

  88. Falvo, M.R., Clary, G.J., Taylor II, R.M., Chi, V., Brooks Jr, F.P., Washburn, S., Superfine, R.: Bending and buckling of carbon nanotubes under large strain. Nature 389, 582–584 (1997)

    Article  Google Scholar 

  89. Kuzumaki, T., Mitsuda, Y.: Dynamic measurement of electrical conductivity of carbon nanotubes during mechanical deformation by nanoprobe manipulation in transmission electron microscopy. Appl. Phys. Lett. 85, 1250–1252 (2004)

    Article  Google Scholar 

  90. Nakayama, Y., Nagataki, A., Suekane, O., Cai, X., Akita, S.: Current-induced plastic deformation of double-walled carbon nanotubes. Jpn. J. Appl. Phys. 44, L720–L722 (2005)

    Google Scholar 

  91. Knechtel, W.H., Düusberg, G.S., Blau, W.J., Hernandez, E., Rubio, A.: Reversible bending of carbon nanotubes using a transmission electron microscope. Appl. Phys. Lett. 73, 1961–1963 (1998)

    Article  Google Scholar 

  92. Yao, Z., Postma, H.W.C., Balents, L., Dekker, C.: Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999)

    Article  Google Scholar 

  93. Stevens, R., Nguyen, C., Meyyappan, M.: Nanomanipulation and fabrication by ion beam molding. IEEE Trans. Nanotechnol. 5, 255–257 (2006)

    Article  Google Scholar 

  94. Cumings, J., Zettl, A.: Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000)

    Article  Google Scholar 

  95. Fennimore, A.M., Yuzvinsky, T.D., Han, W.Q., Fuhrer, M.S., Cumings, J., Zettl, A.: Rotational actuators based on carbon nanotubes. Nature 424, 408–410 (2003)

    Article  Google Scholar 

  96. Bearden, J.A., Burr, A.F.: Reevaluation of X-Ray Atomic Energy Levels. Rev. Mod.Phys. 39, 125–142 (1967)

    Article  Google Scholar 

  97. Seiler, H.: Secondary electron emission in the scanning electron microscope. J. App. Phys. 54, R1–R18 (1983)

    Google Scholar 

  98. Reimer, L.: Scanning electron microscopy, 2nd edn., p. 118. Springer, Berlin (1998)

    Google Scholar 

  99. Pop, E., Mann, D., Wang, Q., Goodson, K., Dai, H.: Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006)

    Article  Google Scholar 

  100. Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)

    Article  Google Scholar 

  101. Hansson, A., Paulsson, M., Stafström, S.: Effect of bending and vacancies on the conductance of carbon nanotubes. Phys. Rev. B 62, 7639–7644 (2000)

    Article  Google Scholar 

  102. Walkeajärvi, T., Lievonen, J., Ahlskog, M., Åström, J., Koshio, A., Yudasaka, M., Iijima, S.: Bending of multiwalled carbon nanotubes over gold lines. J. Appl. Phys. 98, 104301 (2005)

    Article  Google Scholar 

  103. Wang, X., Yang, H.K.: Bending stability of multiwalled carbon nanotubes. Phys. Rev. B 73, 85409 (2006)

    Article  Google Scholar 

  104. Poncharal, P., Wang, Z.L., Ugarte, D., de Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    Article  Google Scholar 

  105. Iijima, S., Brabec, C., Maiti, A., Bernholc, J.: Structural flexibility of carbon nanotubes. J. Chem. Phys. 104, 2089–2092 (1996)

    Article  Google Scholar 

  106. Lambin, P., Fonseca, A., Vigneron, J.P., Nagy, J.B., Lucas, A.A.: Structural and electronic properties of bent carbon nanotubes. Chem. Phys. Lett. 245, 85–89 (1995)

    Article  Google Scholar 

  107. Dong, L.X., Nelson, B., Fukuda, T., Arai, F., Nakajima, M.: Towards Linear Nano Servomotors with Integrated Position Sensing. In: Proc. of the IEEE Conf. on Robotics and Automation 2005 (ICRA 2005), pp. 867–872 (2005)

    Google Scholar 

  108. Cumings, J., Zettl, A.: Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes. Science 289, 602–604 (2000)

    Article  Google Scholar 

  109. Zheng, Q., Jiang, Q.: Multiwalled Carbon Nanotubes as Gigahertz Oscillators. Phys. Rev. Lett 88, 045503 (2002)

    Google Scholar 

  110. Legoas, S.B., Coluci, V.R., Braga, S.F., Coura, P.Z., Dantas, S.O., Galvao, D.S.: Molecular-Dynamics Simulations of Carbon Nanotubes as Gigahertz Oscillators. Phys. Rev. Lett. 90, 055504 (2003)

    Google Scholar 

  111. Guo, W., Guo, Y., Gao, H., Zheng, Q., Zhoug, W.: Energy Dissipation in Gigahertz Oscillators from Multiwalled Carbon Nanotubes. Phys. Rev. Lett. 91, 125501 (2003)

    Article  Google Scholar 

  112. Hansson, A., Stafstrom, S.: Intershell Conductance in Multiwall Carbon Nanotubes. Phys. Rev. B. 67, 075406 (2003)

    Google Scholar 

  113. Guo, W., Zhoun, W., Dai, Y., Li, S.: Coupled Defect-Size Effects on Interlayer Friction in Multiwalled Carbon Nanotubes. Phys. Rev. B 72, 075409 (2005)

    Google Scholar 

  114. Akita, S., Nakayama, Y.: Interlayer Sliding Force of Individual Multiwall Carbon Nanotubes. Jpn. J. Appl. Phys. 42, 4830–4833 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Fukuda .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fukuda, T., Arai, F., Nakajima, M. (2013). Measurement/Manipulation/Assembly of Carbon Nanotubes under FE-SEM/TEM. In: Micro-Nanorobotic Manipulation Systems and Their Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36391-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36391-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36390-0

  • Online ISBN: 978-3-642-36391-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics