Skip to main content

Use of MEMS Technology in Realizing Single-Parameter and Multi-parameter Sensing Systems

  • Chapter
Wireless Sensor Networks and Ecological Monitoring

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 3))

  • 2254 Accesses

Abstract

To effectively gauge the weather, it is essential to gather many ambient parameters over a wide geographic area. The published literature contains many proposals for Micro-Electro-Mechanical Systems (MEMS)- based sensors for the monitoring of such weather parameters as the temperature, humidity, barometric pressure, wind speed and wind direction. Such sensors not only have the advantages of an increased sensitivity and response time, but also provide the potential for integration to form a Wireless Sensor Network (WSN). This chapter commences by reviewing the various state-of-the-art MEMS-based weather sensors which have been proposed. The chapter then describes the integration of these sensors to form a wireless MEMS-based weather station capable of measuring all of the weather parameters of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mosser, V., Suski, J., Goss, J.: Piezoresistive pressure sensors based on polycrystalline silicon. Sensors and Actuators A: Physical 26(2), 113–132 (1991)

    Article  Google Scholar 

  2. Xue, Z., Qiu, H.: Integrating micromachined fast response temperature sensor array in a glass microchannel. Sensors and Actuators A: Physical 122, 189–195 (2005)

    Article  Google Scholar 

  3. Xu, Y., Chiu, C.W., Jiang, F., Lin, Q., Tai, Y.C.: A MEMS multi-sensor chip for gas flow sensing. Sensors and Actuators A: Physical 121, 253–261 (2005)

    Article  Google Scholar 

  4. He, S., Mench, M.M., Tadigadapa, S.: Thin film temperature sensor for real-time measurement of electrolyte temperature in a polymer electrolyte fuel cell. Sensors and Actuators A: Physical 125, 170–177 (2006)

    Article  Google Scholar 

  5. Lee, C.Y., Lee, S.J., Shen, C.C., Yeh, C.T., Chang, C.C., Chang, Y.M.: In-situ measurement of the local temperature distributions for the steam reforming of a methanol micro reformer by using flexible micro temperature sensors. International Journal of Hydrogen Energy 36, 2869–2876 (2011)

    Article  Google Scholar 

  6. Lee, C.Y., Weng, F.B., Cheng, C.H., Shiu, H.R., Jung, S.P., Chang, W.C., Chan, P.C., Chen, W.T., Lee, C.J.: Use of flexible micro-temperature sensor to determine temperature in situ and to simulate a proton exchange membrane fuel cell. Journal of Power Sources 196, 228–234 (2011)

    Article  Google Scholar 

  7. Yan, W., Li, H., Liu, J., Guo, J.: EPMA and XRD study on nickel metal thin film for temperature sensor. Sensors and Actuators A: Physical 136, 212–215 (2007)

    Article  Google Scholar 

  8. Mao, F., Lindeberg, M., Hjort, K., Klintberg, L.: A Polymer foil non-contact IR temperature sensor with a thermoresistor integrated on the back of a vertically configured thermopile. Sensors and Actuators A: Physical 179, 56–61 (2012)

    Article  Google Scholar 

  9. Han, I.Y., Kim, S.J.: Diode temperature sensor array for measuring micro-scale surface temperature with high resolution. Sensors and Actuators A: Physical 141, 52–58 (2008)

    Article  Google Scholar 

  10. Matzeu, G., Pucci, A., Savi, S., Romanelli, M., Di Francesco, F.: A temperature sensor based on a MWCNT/SEBS nanocomposite. Sensors and Actuators A: Physical 178, 94–99 (2012)

    Article  Google Scholar 

  11. Lee, C.Y., Lee, G.B.: Micromachine-based humidity sensors with integrated temperature sensors for signal drift compensation. Journal of Micromechanics and Microengineering 13, 620–627 (2003)

    Article  Google Scholar 

  12. Chen, C.H., Lin, C.H.: A novel method to fabricate ion-doped microporous polyimide structures for ultra-high sensitive humidity sensing. Sensors and Actuators B: Chemical 135, 276–282 (2008)

    Article  Google Scholar 

  13. Wagner, T., Krotzky, S., Weiß, A., Sauerwald, T., Kohl, C.D., Roggenbuck, J., Tiemann, M.: A high temperature capacitive humidity sensor based on mesoporous silica. Sensors 11, 3135–3144 (2011)

    Article  Google Scholar 

  14. Sorli, B., Pascal-Delannoy, F., Giani, A., Foucaran, A., Boyer, A.: Fast humidity sensor for high range 80-95% RH. Sensors and Actuators A: Physical 100, 24–31 (2002)

    Article  Google Scholar 

  15. Wohltjen, H.: Mechanism of operation and design considerations for surface acoustic wave device vapour sensors. Sensors and Actuators 5(4), 307–325 (1984)

    Article  Google Scholar 

  16. Radeva, E., Georgiev, V., Spassov, L., Koprinarov, N., Kanev, S.: Humidity adsorptive properties of thin fullerene layers studied by means of quartz micro-balance. Sensors and Actuators B: Chemical 42, 11–13 (1997)

    Article  Google Scholar 

  17. Qu, W., Wlodarski, W., Meyer, J.U.: Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4. Sensors and Actuators B: Chemical 64, 76–82 (2000)

    Article  Google Scholar 

  18. Su, P.G., Chan, I.C., Wu, R.J.: Use of poly(2-acrylamido-2-methylpropane sulfonate) modified with tetraethyl orthosilicate as sensing material for measurement of humidity. Analytica Chimica Acta 449, 103–109 (2001)

    Article  Google Scholar 

  19. He, Y., Zhang, T., Zheng, W., Wang, R., Liu, X., Xia, T., Zhao, J.: Humidity sensing properties of BaTi03 nanofiber prepared via electrospinning. Sensors and Actuators B: Chemical 146, 98–102 (2010)

    Article  Google Scholar 

  20. Elwenspoek, M., Wiegerink, R.: Mechanical Microsensors, pp. 106–112. Springer (2001) ISSN 1615-8326, ISBN 962-430-155-7

    Google Scholar 

  21. Mandle, J., Lefort, O., Migeon, A.: A new micromachined silicon high-accuracy pressure sensor. Sensors and Actuators A: Physical 46-47, 129–132 (1995)

    Article  Google Scholar 

  22. Welham, C.J., Gardner, J.W., Greenwood, J.: A laterally driven micromachined resonant pressure sensor. Sensors and Actuators A: Physical 52, 86–91 (1996)

    Article  Google Scholar 

  23. Welham, C.J., Greenwood, J., Bertioli, M.M.: A high accuracy pressure sensor by fusion bonding and trench etching. Sensors and Actuators A: Physical 76, 298–304 (1999)

    Article  Google Scholar 

  24. Petersen, K., Brown, J., Vermeulen, T., Barth, P., Mallon Jr., J., Bryzek, J.: Ultra-stable high-temperature pressure sensors using silicon fusion bonding. Sensors and Actuators A21-A23, 96–101 (1990)

    Google Scholar 

  25. Sugiyama, S., Takigawa, M., Igarashi, I.: Integrated piezoresistive pressure sensor with both voltage and frequency output. Sensors and Actuators 4, 113–120 (1983)

    Article  Google Scholar 

  26. Kress, H.J., Bantien, F., Marek, J., Willmann, M.: Silicon pressure sensor with integrated CMOS signal-conditioning circuit and compensation of temperature coefficient. Sensors and Actuators A: Physical 25-27, 21–26 (1991)

    Google Scholar 

  27. Christel, L., Petersen, K., Barth, P., Pourahmadi, F., Mallon Jr., J., Bryzek, J.: Single-crystal silicon pressure sensors with 500 x overpressure protection. Sensors and Actuators A: Physical A21-A23, 84–88 (1990)

    Article  Google Scholar 

  28. Van Putten, A.F.P., Middelhoek, S.: Integrated silicon anemometer. Electronic Letters 10, 425–426 (1974)

    Article  Google Scholar 

  29. Van Putten, A.F.P., Middelhoek, S.: An integrated silicon double bridge anemometer. Sensor and Actuators A: Physical 4, 387–396 (1983)

    Article  Google Scholar 

  30. Tai, Y.C., Muller, R.S., Howe, R.T.: Polysilicon bridges for anemometer applications. In: Tech. Digest. 3rd Int. Conf. Solid-State Sensors and Actuators (Transducers 1985), Philadelphia, PA, USA, pp. 354–357 (1985)

    Google Scholar 

  31. Johnson, R.G., Higashi, R.E.: A highly sensitive silicon chip microtransducer for air flow and differential pressure sensing applications. Sensors and Actuators A: Physical 11, 63–72 (1987)

    Article  MATH  Google Scholar 

  32. Van Oudheusden, B.W., Van Herwaarden, A.W.: High-sensitivity 2-D flow sensor with an etched thermal isolation structure. Sensors and Actuators A: Physical 22, 425–430 (1990)

    Article  Google Scholar 

  33. Löfdahl, L., Stemme, G., Johansson, B.: Silicon based flow sensors for mean velocity and turbulence measurements. Exp. Fluids 12, 391–392 (1992)

    Article  Google Scholar 

  34. Yoon, E., Wise, K.D.: An integrated mass flow sensor with on-chip CMOS interface circuitry. IEEE Transactions on Electron Devices 39, 1376–1386 (1992)

    Article  Google Scholar 

  35. Nguyen, N.T., Dötzel, W.: Asymmetrical locations of heaters and sensors relative to each other using heater arrays: a novel method for designing multi-range electrocaloric mass-flow sensors. Sensors and Actuators A: Physical 62, 506–512 (1997)

    Article  Google Scholar 

  36. Ebefors, T.R., Lvesten, E.K., Stemme, G.: Three dimensional silicon triple-hot-wire anemometer based on polyimide joints. In: IEEE Int. Workshop on Micro-Electron-Mechanical-System (MEMS 1998), Heidelberg, Germany, pp. 120–126 (1998)

    Google Scholar 

  37. Kaltsas, G., Nassiopoulou, A.G.: Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation. Sensors and Actuators A: Physical 76, 133–138 (1999)

    Article  Google Scholar 

  38. Liu, C., Huang, J.B., Zhu, Z., Jiang, F., Tung, S., Tai, Y.C., Ho, C.M.: A micromachined flow shear-stress sensor based on thermal transfer principles. Journal of Microelectromechanical Systems 8, 90–99 (1999)

    Article  Google Scholar 

  39. Hung, S.T., Wong, S.C., Fang, W.: The development and application of microthermal sensors with a mesh-membrane supporting structure. Sensors and Actuators A: Physical 84, 70–75 (2000)

    Article  Google Scholar 

  40. Makinwa, K.A.A., Huijsing, J.H.: A smart wind sensor using thermal sigma-delta modulation techniques. Sensors and Actuators A: Physical 97-98, 15–20 (2002)

    Article  Google Scholar 

  41. Chen, J., Fan, Z., Zou, J., Engel, J., Liu, C.: Two-dimensional micromachined flow sensor array for fluid mechanics studies. Journal of Aerospace Engineering 16, 85–97 (2003)

    Article  Google Scholar 

  42. Sabaté, N., Santander, J., Fonseca, L.: Multi-range silicon micromachined flow sensor. Sensors and Actuators A: Physical 110, 282 (2004)

    Article  Google Scholar 

  43. Yu, B., Gan, Z., Cao, S., Xu, J., Liu, S.: A micro channel integrated gas flow sensor for high sensitivity. In: Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM 2008), Orlando, Florida, USA, pp. 215–220 (2008)

    Google Scholar 

  44. Ma, R.H., Wang, Y.H., Lee, C.Y.: Wireless remote weather monitoring system based on MEMS technologies. Sensors 11, 2715–2727 (2011)

    Article  Google Scholar 

  45. Octopus, http://hscc.cs.nthu.edu.tw/project/ (retrieved on November 15, 2010)

  46. TinyOS, http://www.tinyos.net/ (retrieved on November 15, 2010)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ke, M.T., Lee, CY. (2013). Use of MEMS Technology in Realizing Single-Parameter and Multi-parameter Sensing Systems. In: Mukhopadhyay, S., Jiang, JA. (eds) Wireless Sensor Networks and Ecological Monitoring. Smart Sensors, Measurement and Instrumentation, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36365-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36365-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36364-1

  • Online ISBN: 978-3-642-36365-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics