Skip to main content

Using πDDs in the Design of Reversible Circuits

(Work-In-Progress)

  • Conference paper
Reversible Computation (RC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7581))

Included in the following conference series:

Abstract

With πDDs a data structure has recently been introduced that offers a compact representation for sets of permutations. Since reversible functions constitute permutations on the input assignments, they can naturally be expressed using this data structure. However, its potential has not been exploited so far. In this work-in-progress report, we present and discuss possible applications of πDDs within the design of reversible circuits including techniques for synthesis, debugging, and an efficient determination of the number of minimal circuits. We observed that πDDs inhibit the same space complexities as truth tables and, hence, do not superior existing design methods in many cases. However, they are advantageous when dealing with several functions or gates at once.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wille, R., Le, H.M., Dueck, G.W., Große, D.: Quantified Synthesis of Reversible Logic. In: Design, Automation and Test in Europe, pp. 1015–1020. IEEE (March 2008)

    Google Scholar 

  2. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Design Automation Conference, pp. 270–275. ACM (July 2009)

    Google Scholar 

  3. Kerntopf, P.: A New Heuristic Algorithm for Reversible Logic Synthesis. In: Design Automation Conference, pp. 834–837 (June 2004)

    Google Scholar 

  4. Soeken, M., Wille, R., Drechsler, R.: Hierarchical synthesis of reversible circuits using positive and negative Davio decomposition. In: Int’l Design and Test Workshop, pp. 143–148 (December 2010)

    Google Scholar 

  5. Miller, D.M., Thornton, M.A.: QMDD: A Decision Diagram Structure for Reversible and Quantum Circuits. In: Int’l Symp. on Multiple-Valued Logic, p. 30. IEEE Computer Society (May 2006)

    Google Scholar 

  6. Wille, R., Große, D., Miller, D.M., Drechsler, R.: Equivalence Checking of Reversible Circuits. In: Int’l Symp. on Multiple-Valued Logic, pp. 324–330. IEEE Computer Society (May 2009)

    Google Scholar 

  7. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of Reversible Circuits with Minimal Lines for Large Functions. In: Asia and South Pacific Design Automation Conference (January 2012)

    Google Scholar 

  8. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  9. Wang, S.A., Lu, C.Y., Tsai, I.M., Kuo, S.Y.: An XQDD-based verification method for quantum circuits. IEICE Transactions 91-A(2), 584–594 (2008)

    Google Scholar 

  10. Minato, S.-I.: πDD: A New Decision Diagram for Efficient Problem Solving in Permutation Space. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 90–104. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Toffoli, T.: Reversible Computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)

    Chapter  Google Scholar 

  12. Minato, S.: Zero-Supressed BDDs for Set Manipulation in Combinational Problems. In: Design Automation Conference, pp. 272–277 (June 1993)

    Google Scholar 

  13. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact Multiple-Control Toffoli Network Synthesis With SAT Techniques. IEEE Trans. on CAD 28(5), 703–715 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Soeken, M., Wille, R., Minato, Si., Drechsler, R. (2013). Using πDDs in the Design of Reversible Circuits. In: Glück, R., Yokoyama, T. (eds) Reversible Computation. RC 2012. Lecture Notes in Computer Science, vol 7581. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36315-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36315-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36314-6

  • Online ISBN: 978-3-642-36315-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics