Skip to main content

Analysis of Generalized Newtonian Fluids

  • Chapter
  • First Online:
Topics in Mathematical Fluid Mechanics

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2073))

Abstract

In this paper we want to present an optimal existence result for the steady motion of generalized Newtonian fluids. Moreover, we present an optimal error estimate for a FEM approximation of the corresponding steady p-Stokes system. The presented results are based on long lasting cooperations with L. Berselli, L. Diening, J. Málek, A. Prohl and J. Wolf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    N stands for “nice”.

  2. 2.

    In the following we will not distinguish between a sequence a suitably chosen subsequences, i.e. a subsequence of (an) will be again denoted by (an).

  3. 3.

    Note that it is possible to modify the proof such that the limiting case \(p = \frac{3d} {d+2}\) is included. For that one has to choose a more regular basis of V p (Ω), which is always possible (cf. [28]). We do not go into the details because later (cf. Theorem 25) we will improve the lower bound substantially.

  4. 4.

    Note, that one can also adapt the approach in  [7, Sec. VI.4] to obtain the same results in two dimensions (cf. [3]).

References

  1. E. Acerbi, N. Fusco, Regularity for minimizers of nonquadratic functionals: the case 1 < p < 2. J. Math. Anal. Appl. 140(1), 115–135 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Acerbi, N. Fusco, On the finite element approximation of p-Stokes systems. SIAM J. Numer. Anal. 50(2), 373–397 (2012). doi:10.1137/10080436X

    Article  MathSciNet  Google Scholar 

  3. L. Belenki, L.C. Berselli, L. Diening, M. Růžička, On the finite element approximation of p-Stokes systems, preprint SFB/TR 71 (2010)

    Google Scholar 

  4. H. Bellout, F. Bloom, J. Nečas, Solutions for incompressible non–Newtonian fluids. C. R. Acad. Sci. Paris 317 795–800 (1993)

    MATH  Google Scholar 

  5. L.C. Berselli, L. Diening, M. Růžička, Existence of strong solutions for incompressible fluids with shear dependent viscosities. J. Math. Fluid Mech. 12(1), 101–132 (2010). Online First, doi:10.1007/s00021-008-0277-y

    Google Scholar 

  6. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamic of Polymer Liquids, 2nd edn. (Wiley, New York, 1987)

    Google Scholar 

  7. F. Brezzi, M. Fortin, in Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15 (Springer, New York, 1991)

    Google Scholar 

  8. M. Bulíček, L. Consiglieri, J. Málek, On solvability of a non-linear heat equation with a non-integrable convective term and data involving measures. Nonlinear Anal. Real World Appl. 12(1), 571–591 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Buliček, P. Gwiazda, J. Málek, A. Świerczewska, On steady flows of an incompressible fluids with implicit power-law-like rheology. Adv. Calc. Var. 2(2), 109–136 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Ph. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numérique 9(R-2), 77–84 (1975)

    Google Scholar 

  11. L. Diening, M. Růžička, K. Schumacher, A decomposition technique for John domains. Ann. Acad. Sci. Fenn. Ser. A. I. Math. 35(1), 87–114 (2010)

    Article  MATH  Google Scholar 

  12. L. Diening, C. Ebmeyer, M. Růžička, Optimal convergence for the implicit space-time discretization of parabolic systems with p-structure. SIAM J. Numer. Anal. 45, 457–472 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Diening, F. Ettwein, Fractional estimates for non–differentiable elliptic systems with general growth. Forum Mathematicum 20(3), 523–556 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Diening, Ch. Kreuzer, Linear convergence of an adaptive finite element method for the p-Laplacian equation. SIAM J. Numer. Anal. 46, 614–638 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Diening, J. Málek, M. Steinhauer, On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications. ESAIM Control Optim. Calc. Var. 14(2), 211–232 (2008). doi:10.1051/cocv:2007049

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Diening, M. Růžička, Interpolation operators in Orlicz–Sobolev spaces. Num. Math. 107, 107–129 (2007). doi:10.1007/s00211-007-0079-9

    Article  MATH  Google Scholar 

  17. L. Diening, M. Růžička, An existence result for non-Newtonian fluids in non-regular domains. Discrete Contin. Dyn. Syst. Ser. S 3(2), 255–268 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Diening, M. Růžička, J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids. Ann. Scuola Norm. Sup. Pisa Cl. Sci. V IX, 1–46 (2010)

    Google Scholar 

  19. H. Eberlein, M. Růžička, Existence of weak solutions for unsteady motions of Herschel–Bulkley fluids. J. Math. Fluid Mech. (2011). doi:10.1007/s00021-011-0080-z

    Google Scholar 

  20. J. Frehse, J. Málek, M. Steinhauer, An existence result for fluids with shear dependent viscosity – steady flows. Nonlinear Anal. Theory Methods Appl. 30, 3041–3049 (1997)

    Article  MATH  Google Scholar 

  21. H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Akademie, Berlin, 1974)

    MATH  Google Scholar 

  22. V. Girault, J.L. Lions, Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Port. Math. (N.S.) 58(1), 25–57 (2001)

    Google Scholar 

  23. V. Girault, L.R. Scott, A quasi-local interpolation operator preserving the discrete divergence. Calcolo 40(1), 1–19 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Giusti, Metodi Diretti nel Calcolo delle Variazioni (Unione Matematica Italiana, Bologna, 1994)

    MATH  Google Scholar 

  25. M. Gutmann, An Existence Result for Herschel–Bulkley Fluids Based on the Lipschitz Truncation Method (Diplomarbeit, Universität Freiburg, Freiburg, 2009)

    Google Scholar 

  26. A. Kufner, O. John, S. Fučík, Function Spaces (Academia, Praha, 1977)

    MATH  Google Scholar 

  27. R. Landes, Quasimonotone versus pseudomonotone. Proc. R. Soc. Edinb. Sect. A 126(4), 705–717 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires (Dunod, Paris, 1969)

    MATH  Google Scholar 

  29. J. Málek, J. Nečas, M. Růžička, On the non-Newtonian incompressible fluids. Math. Models Methods Appl. Sci. 3, 35–63 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Málek, K.R. Rajagopal, M. Růžička, Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models Methods Appl. Sci. 5, 789–812 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Málek, K.R. Rajagopal, in Mathematical Issues Concerning the Navier-Stokes Equations and Some of Its Generalizations. Handb. Differ. Equ. in Evolutionary equations, Vol. II, (Elsevier/North-Holland, Amsterdam, 2005), pp. 371–459

    Google Scholar 

  32. J. Málek, M. Růžička, V.V. Shelukhin, Herschel–Bulkley fluids: existence and regularity of steady flows. M3AS 15(12), 1845–1861 (2005)

    Google Scholar 

  33. J. Malý, W.P. Ziemer, in Fine Regularity of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs, vol. 51 (American Mathematical Society, Providence, 1997)

    Google Scholar 

  34. M.M. Rao, Z.D. Ren, in Theory of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146 (Marcel Dekker Inc., New York, 1991)

    Google Scholar 

  35. S. Rauscher, Existenz schwacher Lösungen stationärer Bewegungen von Fluiden mit scherspannungsabhängiger Viskoität im unbeschränkten Gebiet (Diplomarbeit, Universität Freiburg, Freiburg, 2011)

    Google Scholar 

  36. M. Růžička, L. Diening, Non–Newtonian Fluids and Function Spaces. Nonlinear Analysis, Function Spaces and Applications, Proceedings of NAFSA 2006 Prague, vol. 8, 2007, pp. 95–144

    Google Scholar 

  37. L.R. Scott, S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  38. E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970)

    MATH  Google Scholar 

  39. B. Weber, Existenz sehr schwacher Lösungen für mikropolare elektrorheologische Flüssigkeiten (Diplomarbeit, Universität Freiburg, Freiburg, 2011)

    Google Scholar 

Download references

Acknowledgements

The author have been partially supported by the SFB/TR 71 “Geometric Partial Differential Equations”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Růžička .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Růžička, M. (2013). Analysis of Generalized Newtonian Fluids. In: Topics in Mathematical Fluid Mechanics. Lecture Notes in Mathematics(), vol 2073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36297-2_4

Download citation

Publish with us

Policies and ethics