Skip to main content

Steady-State Navier–Stokes Problem Past a Rotating Body: Geometric-Functional Properties and Related Questions

  • Chapter
  • First Online:
Topics in Mathematical Fluid Mechanics

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2073))

Abstract

As is well known, the three-dimensional steady motion of a viscous, incompressible (Navier–Stokes) liquid around a rigid body, \(\mathcal{B}\), is among the fundamental and most studied questions in fluid dynamics; see e.g. [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \({}^{\ddag }\)Partially supported by NSF grant DMS-1062381

  2. 2.

    Or, equivalently, the body is at rest and the liquid tends to a constant uniform flow at large distances from the body.

  3. 3.

    A reasonably complete list of reference would be too long to be included here. A good source of information is provided by the articles collected in [26] and the bibliography quoted therein.

  4. 4.

    See the third term on the left-hand side of (1).

  5. 5.

    As a matter of fact, even in absence of rotation, this type of properties have been addressed only very recently; see [17, 18, 24, 25].

  6. 6.

    See e.g. [20, p. 10].

  7. 7.

    This assumption also implies, of course, that both \(\boldsymbol{\eta }\) and \(\boldsymbol{\omega }\) are non-zero. While the case \(\boldsymbol{\omega } = \boldsymbol{0}\) can be still treated by the methods described in these Notes to obtain very similar results [18], the same methods do not work if \(\boldsymbol{\eta } = \boldsymbol{0}\). We refer the reader to [20, Chap. XI] for the known results in this latter case.

  8. 8.

    As customary, \(\mathbb{R}_{+}\) denotes the set of all positive real numbers.

  9. 9.

    More precisely, Y is isomorphic to \(\mathcal{D}_{0}^{1,2}(\Omega )\).

  10. 10.

    This assumption is certainly verified if \(\boldsymbol{f}\) satisfies further summability hypothesis.

  11. 11.

    Let S be any space of real functions. As a rule, we shall use the same symbol S to denote the corresponding space of vector and tensor-valued functions.

  12. 12.

    Throughout these Notes, “linear” functional on a Banach space X, means a map \(F : X\mapsto \mathbb{R}\) (or \(\mathbb{C}\)) with D(F) = X, that is bounded and distributive. See Definition 9.

  13. 13.

    Sometimes in the literature, our definition of coerciveness is also referred to as weak coerciveness.

  14. 14.

    See Remark 34.

  15. 15.

    However, problem (33) is well-posed for \(\boldsymbol{u}\) and \(\boldsymbol{f}\) in suitable Lorentz spaces; see [30].

  16. 16.

    We recall that a subset B of X is said to be a Banach manifold of class C k if for any x ∈ B there is an open neighborhood U(x) in X such that U(x) ∩ B is C k -diffeomorphic to an open set in a Banach space X x.

  17. 17.

    The definition of degree can be suitably extended to the case when D(M) ⊊X. However, such a circumstance will not happen in the applications we have in mind. For this more general case, we refer the reader to, e.g., [5, p. 263 and ff.].

  18. 18.

    See (47) for notation.

  19. 19.

    Formally, (58) is obtained by first writing, in (58), \(\boldsymbol{v} = \boldsymbol{u} + \boldsymbol{V }\), then by taking the scalar product of both sides of the resulting equation by \(\boldsymbol{\varphi }\), and, finally, by integrating by parts over Ω.

  20. 20.

    In fact, one can easily construct examples proving the invalidity of (60), if \(\boldsymbol{u}\) only belongs to \(\mathcal{D}_{0}^{1,2}(\Omega )\).

  21. 21.

    See (??) below with q = 2.

  22. 22.

    Interpolation inequalities for positive anisotropic Sobolev spaces are well-known; see, e.g., [6].

  23. 23.

    For future reference, we remark that, in view of (79)2, the redefined pressure satisfies the asymptotic condition \(p_{k} - {p}^{(0)} = O(\vert x{\vert }^{-2})\) as | x | → .

  24. 24.

    See footnote 22.

  25. 25.

    Notice that from (117)1, (112) and (119) it follows \(\boldsymbol{w} \in {L}^{2}({\mathbb{R}}^{3})\).

  26. 26.

    For simplicity, in what follows, we suppress the dependence on \(\boldsymbol{\mathfrak{p}}\).

  27. 27.

    A detailed analysis of the spectrum of the lienearized operator is given in [9].

  28. 28.

    This may depend on the particular non-dimensionalization of the Navier–Stokes equations and on the special form of the family of solutions \(\boldsymbol{u}_{0}\). In fact, there are several interesting problems formulated in exterior domains where this circumstance takes place, like, for example, the problem of steady bifurcation considered in the previous section and the one studied in [23, Sect. 6].

  29. 29.

    Namely, that \((\boldsymbol{w}_{k},\boldsymbol{\Phi })\) can be uniquely extended to an element of \(\mathcal{D}_{0}^{-1,2}({\Omega }^{R})\) with preservation of the norm.

  30. 30.

    In fact, setting  −  = \(\frac{1}{2\pi}\int^{2\pi}_{0}\), and recalling (115)2 and (114) in Sect. 3, we find

    $$\begin{array}{rl} \boldsymbol{w}_{0}({\boldsymbol{Q}}^{\top }(t) \cdot \boldsymbol{ y}) & =\displaystyle\int -\boldsymbol{Q}(\tau ) \cdot \boldsymbol{v}({\boldsymbol{Q}}^{\top }(\tau ) \cdot {\boldsymbol{Q}}^{\top }(t) \cdot \boldsymbol{ y})d\tau =\displaystyle\int -\boldsymbol{Q}(\tau ) \cdot \boldsymbol{v}({\boldsymbol{Q}}^{\top }(\tau + t) \cdot \boldsymbol{ y})d\tau \\ & =\displaystyle\int -\boldsymbol{Q}(\tau - t) \cdot \boldsymbol{v}({\boldsymbol{Q}}^{\top }(\tau ) \cdot \boldsymbol{ y})d\tau = \boldsymbol{Q}(-t) \cdot \displaystyle\int -\boldsymbol{Q}(\tau ) \cdot \boldsymbol{v}({\boldsymbol{Q}}^{\top }(\tau ) \cdot \boldsymbol{ y})d\tau \\ & ={ \boldsymbol{Q}}^{\top }(t) \cdot \displaystyle\int -\boldsymbol{w}(y,\tau )d\tau ={ \boldsymbol{Q}}^{\top }(t) \cdot \boldsymbol{w}_{0}(y) \end{array}$$
  31. 31.

    Of course, the assumption \(\boldsymbol{u}_{0} \in L_{\mathrm{loc}}^{4}(\overline{\Omega })\) is redundant if \(\boldsymbol{u}_{0} \in X(\Omega )\).

References

  1. N. Aronszajn, E. Gagliardo, Interpolation spaces and interpolation methods. Ann. Mat. Pura Appl 68, 51–117 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. K.I. Babenko, On stationary solutions of the problem of flow past a body of a viscous incompressible fluid. Mat. Sb. 91(133), 3–27 (1973); English Transl.: Math. SSSR Sbornik 20, 1–25 (1973)

    Google Scholar 

  3. K.I. Babenko, Spectrum of the linearized problem of flow of a viscous incompressible liquid around a body. Dokl. Akad. Nauk SSSR 262(1), 64–68 (1982); English Transl.: Sov. Phys. Dokl. 27(1), 25–27 (1982)

    Google Scholar 

  4. G.K. Batchelor, An Introduction to Fluid Mechanics (Cambridge University Press, Cambridge, 1981)

    Google Scholar 

  5. M.S. Berger, in Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis (Academic, 1977)

    Google Scholar 

  6. O.V. Besov, V.P. Ilin, L.D. Kudrjavcev, P.I. Lizorkin, S.M. Nikolskiĭ, The Theory of the Imbeddings of Classes of Differentiable Functions of Several Variables. (Russian) Partial Differential Equations (Proc. Sympos. dedicated to the 60th birthday of S.L. Sobolev) (Russian), Izdat. “Nauka”, Moscow, 38–63 (1970)

    Google Scholar 

  7. P. Cheng, Natural convection in a porous medium: external flows, in Natural Convection: Fundamentals and Applications, ed. by S. Kakaç, W. Awung, R. Viskanta (Hemisphere, Washington, D.C., 1985), pp. 475–513

    Google Scholar 

  8. P. Constantin, C. Foiaş, R. Temam, Attractors representing turbulent flows. Mem. Am. Math. Soc. 53(314) (1985)

    Google Scholar 

  9. R. Farwig, J. Neustupa, Spectral properties in L q of an Oseen operator modelling fluid flow past a rotating body. Tohoku Math. J. 62, 287–309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems. Arch. Ration. Mech. Anal. 19, 363–406 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  11. P.M. Fitzpatrick, J. Pejsachowicz, P.J. Rabier, The degree of proper C 2 Fredholm mappings, I. J. Reine Angew. Math. 427, 1–33 (1992)

    MathSciNet  MATH  Google Scholar 

  12. C. Foiaş, G. Prodi, Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova 39, 1–34 (1967)

    MathSciNet  Google Scholar 

  13. C. Foiaş, R. Temam, Structure of the set of stationary solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 30(2), 149–164 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Foiaş, R. Temam, Determination of the solutions of the Navier-Stokes equations by a set of Nodal values. Math. Comp. 43(167), 117–133 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Foiaş, R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation. Ann. Scuola Norm. Pisa 5, 29–63 (1978)

    MATH  Google Scholar 

  16. C. Foiaş, E.S. Titi, Determining nodes, finite difference schemes and inertial manifolds. Nonlinearity 4, 135–153 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. G.P. Galdi, Determining modes, nodes and volume elements for stationary solutions of the Navier-Stokes problem past a three-dimensional body. Arch. Ration. Mech. Anal. 180, 97–126 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. G.P. Galdi, Further properties of steady-state solutions to the Navier-Stokes problem past a threedimensional obstacle. J. Math. Phys. special issue dedicated to Mathematical Fluid Mechanics (2007)

    Google Scholar 

  19. G.P. Galdi, A steady-state exterior problem that is not well-posed. Proc. Am. Math. Soc. 137, 679–684 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. (MR2808162) G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, 2nd edn. (Springer, New York, 2011)

    Google Scholar 

  21. G.P. Galdi, J.G. Heywood, Y. Shibata, On the global existence and convergence to steady state of Navier-Stokes flow past an obstacle that is started from the rest. Arch. Ration. Mech. Anal. 138, 307–319 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. G.P. Galdi, M. Kyed, A simple proof of L q-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: weak solutions. Proc. Am. Math. Soc. (2012) (in press)

    Google Scholar 

  23. G.P. Galdi, M. Padula, A new approach to energy theory in the stability of fluid motion. Arch. Ration. Mech. Anal. 110, 187–286 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. G.P. Galdi, P.J. Rabier, Functional properties of the Navier-Stokes operator and bifurcation of stationary solutions: planar exterior domains, in Topics in Nonlinear Analysis. Progress in Nonlinear Differential Equations and Applications, vol. 35 (Birkhäuser, Basel, 1999), pp. 273–303

    Google Scholar 

  25. G.P. Galdi, P.J. Rabier, Sharp existence results for the stationary Navier-Stokes problem in three-dimensional exterior domains. Arch. Ration. Mech. Anal. 154, 343–368 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. G.P. Galdi, R. Rannacher, in Fundamental Trends in Fluid-Structure Interaction. Contemporary Challenges in Mathematical Fluid Dynamics and Its Applications, vol. 1 (World Scientific Publishing, Hackensack, 2010)

    Google Scholar 

  27. G.P. Galdi, A.L. Silvestre, Further results on steady-state flow of a Navier-Stokes liquid around a rigid body. Existence of the Wake, RIMS, Kokyuroku Bessatsu Kyoto Univ., 2007, 127–143

    Google Scholar 

  28. I. Gohberg, S. Goldberg, M.A. Kaashoek, in Classes of Linear Operators: I. Operator Theory. Advances and Applications, vol. 49 (Birkhäuser, Basel, 1990)

    Google Scholar 

  29. T. Kato, Perturbation Theory for Linear Operators (Springer, New York, 1966)

    Book  MATH  Google Scholar 

  30. H. Kozono, M. Yamazaki, Exterior problem for the stationary Navier-Stokes equations in the Lorentz space. Math. Ann. 310, 279–305 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Kozono, H. Sohr, On stationary Navier-Stokes equations in unbounded domains. Ricerche Mat. 42, 69–86 (1993)

    MathSciNet  MATH  Google Scholar 

  32. H. Kozono, H. Sohr, M. Yamazaki, Representation formula, net force and energy relation to the stationary Navier-Stokes equations in 3-dimensional exterior domains. Kyushu J. Math. 51, 239–260 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Kračmar, S. Nečasová, P. Penel, L q-approach of weak solutions to stationary rotating Oseen equations in exterior domains. Q. Appl. Math. 68, 421–437 (2010)

    MATH  Google Scholar 

  34. O.A. Ladyzhenskaya, Investigation of the Navier-Stokes equation for a stationary flow of an incompressible fluid. Uspehi Mat. Nauk. (3) 14, 75–97 (1959) [in Russian]

    Google Scholar 

  35. J. Leray, Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’ hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MathSciNet  Google Scholar 

  36. J. Leray, Les problémes non linéaires. Enseignement Math. 35, 139–151 (1936)

    Google Scholar 

  37. J.H. Merkin, Free convection boundary layers on axisymmetric and twodimensional bodies of arbitrary shape in a saturated porous medium. Int. J. Heat Mass Transf. 22, 1461–1462 (1979)

    Article  Google Scholar 

  38. D.A. Nield, A. Bejan, Convection in Porous Media, 2nd edn. (Springer, New York, 1999)

    Book  MATH  Google Scholar 

  39. J.-C. Saut, R. Temam, Generic properties of Navier-Stokes equations: genericity with respect to the boundary values. Indiana Univ. Math. J. 29, 427–446 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  40. C.G. Simader, H. Sohr, in The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains. A New Approach to Weak, Strong and (2+k)-Solutions in Sobolev-Type Spaces. Pitman Research Notes in Mathematics Series, vol. 360 (Longman, Harlow, 1996)

    Google Scholar 

  41. H. Sohr, in The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhüser Advanced Texts (Birkhuser, Basel, 2001)

    Google Scholar 

  42. S. Smale, An infinite dimensional version of Sards theorem. Am. J. Math. 87, 861–866 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  43. E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970)

    MATH  Google Scholar 

  44. A. Szulkin, M. Willem, Eigenvalue problems with indefinite weight. Studia Math. 135, 191–201 (1999)

    MathSciNet  MATH  Google Scholar 

  45. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis (SIAM, 1983)

    Google Scholar 

  46. E. Zeidler, in Nonlinear Functional Analysis and Applications, vol. 1. Fixed-Point Theorems (Springer, New York, 1986)

    Google Scholar 

  47. E. Zeidler, in Nonlinear Functional Analysis and Applications, vol. 4. Application to Mathematical Physics (Springer, New York, 1988)

    Google Scholar 

  48. E. Zeidler, in Applied Functional Analysis: Applications to Mathematical Physics. Applied Mathematical Sciences, vol. 108 (Springer, 1995)

    Google Scholar 

  49. E. Zeidler, in Applied Functional Analysis: Main Principles and their Applications. Applied Mathematical Sciences, vol. 109 (Springer, 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni P. Galdi .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Galdi, G.P. (2013). Steady-State Navier–Stokes Problem Past a Rotating Body: Geometric-Functional Properties and Related Questions. In: Topics in Mathematical Fluid Mechanics. Lecture Notes in Mathematics(), vol 2073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36297-2_3

Download citation

Publish with us

Policies and ethics