Skip to main content

Complex Fluids and Lagrangian Particles

  • Chapter
  • First Online:
Topics in Mathematical Fluid Mechanics

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2073))

Abstract

We discuss complex fluids that are comprised of a solvent, which is an incompressible Newtonian fluid, and particulate matter in it. The complex fluid occupies a region in physical space \({\mathbb{R}}^{d}\). The particles are described using a finite dimensional manifold M, which serves as configuration space. Simple models [15, 29] represent complicated objects by retaining very few degrees of freedom, and in those cases \(M = {\mathbb{R}}^{d}\) or \(M = {\mathbb{S}}^{d-1}\). In general, there is no reason why the number of degrees of freedom of the particles should equal, or be related to the number of degrees of freedom of ambient physical space. We will consider as starting point kinetic descriptions of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.W. Barrett, C. Schwab, E. Süli, Existence and equilibration of global weak solutions to finitely extensible nonlinear bead-spring chain models for dilute polymers, preprint (2010)

    Google Scholar 

  2. J.W. Barrett, E. Süli, Finite elements approximation of finitely extensible nonlinear elastic dumbbell models of dilute polymers. ESAIM Math. Model. Numer. Anal. 46, 949–978 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. J.-Y. Chemin, N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 33, 84–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Constantin, Nonlinear Fokker–Planck Navier–Stokes systems. Comm. Math. Sci. 3, 531–544 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Constantin, in Smoluchowski Navier–Stokes Systems, Contemporary Mathematics, vol. 429, ed. by G.-Q. Chen, E. Hsu, M. Pinsky (AMS, Providence, 2007), pp. 85–109

    Google Scholar 

  6. P. Constantin, Remarks on complex fluids, to appear

    Google Scholar 

  7. P. Constantin, C. Fefferman, E. Titi, A. Zarnescu, Regularity for coupled two-dimensional nonlinear Fokker–Planck and Navier–Stokes systems. Comm. Math. Phys. 270, 789–811 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Constantin, M. Kliegl, Global existence for Oldroyd B equations with diffusing stress in 2D, in preparation

    Google Scholar 

  9. P. Constantin, N. Masmoudi, Global well-posedness for a Smoluchowski equation coupled with Navier–Stokes equations in 2D. Comm. Math. Phys. 278, 179–191 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Constantin, G. Seregin, Hölder Continuity of Solutions of 2D Navier–Stokes Equations with Singular Forcing

    Google Scholar 

  11. P. Constantin, G. Seregin, Global regularity of solutions of coupled Navier–Stokes equations and nonlinear Fokker–Planck equations. DCDS-A 26(4), 1185–1186 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Constantin, W. Sun, Remarks on Oldroyd-B and related complex fluid models. CMS, to appear

    Google Scholar 

  13. P. Constantin, The Onsager equation for corpora. J. Comput. Theoret. Nanosci. 7(4), 675–682 (2010)

    Article  Google Scholar 

  14. P. Constantin, A. Zlatos, On the high intensity limit of interacting corpora. Comm. Math. Sci. 8(1), 173–186 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1988)

    Google Scholar 

  16. C. Guillopé, J.-C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15, 849–869 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Kupferman, C. Mangoubi, E. Titi, A Beale–Kato–Majda breakdown criterion for an Oldroyd-B fluid in the creeping flow regime. Comm. Math. Sci. 6, 235–256 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. C. LeBris, T. Lelièvre, Multiscale modelling of complex fluids: a mathematical initiation, in Multiscale Modeling and Simulation in Science, Lect. Notes Comput. Sci. Eng. vol. 66 (Springer, Berlin, 2009)

    Google Scholar 

  19. Z. Lei, Y. Zhou, Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit. SIAM. J. Math. Anal. 37, 797–814 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Z. Lei, N. Masmoudi, Y. Zhou, Remarks on the blowup criteria for Oldroyd models. J. Differ. Equat. 248, 328–341 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Lin, P. Zhang, Z. Zhang, On the global existence of smooth solution to the 2D FENE dumbbell model. Comm. Math. Phys. 277, 531–553 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Lin, C. Liu, P. Zhang, On hydrodynamics of viscoelastic fluids. Comm. Pure Appl. Math 58, 1437–1471 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Lin, C. Liu, P. Zhang, On a micro–macro model for polymeric fluids near equilibrium. Comm. Pure Appl. Math 60, 838–866 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. P.-L. Lions, N. Masmoudi, Global existence of weak solutions to some micro–macro models. C.R. Acad. Sci. Paris 345, 131–141 (2007)

    Google Scholar 

  25. P.-L Lions, N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math. B 21(2), 131–146 (2000)

    Google Scholar 

  26. N. Masmoudi, P. Zhang, Z. Zhang, Global well-posedness for 2D polymeric fluid models and growth estimate. Phys. D 237(10–12), 1663–1675 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. N. Masmoudi, Well-posedness for the FENE dumbbell model of polymeric flows. CPAM 61, 1685–1714 (2008)

    MathSciNet  MATH  Google Scholar 

  28. N. Masmoudi, Global existence of weak solutions to the FENE dumbell model of polymeric flows, preprint (2010)

    Google Scholar 

  29. H.C. Öttinger, Stochastic Processes in Polymeric Fluids (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  30. F. Otto, A.E. Tzavaras, Continuity of velocity gradients in suspensions of rod-like molecules. Comm. Math. Phys. 277, 729–758 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Renardy, An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal. 22, 3131–327 (1991)

    Article  MathSciNet  Google Scholar 

  32. B. Thomases, M. Shelley, Emergence of singular structures in Oldroyd-B fluids. Phys. Fluids 19, 103103 (2007)

    Article  Google Scholar 

  33. B. Thomases, An analysis of the effect of stress diffusion on the dynamics of creeping viscoelastic flow. J. Non-Newtonian Fluid Mech. (2011). DOI:10.1016/j.jnnfm2011.07.009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Constantin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Constantin, P. (2013). Complex Fluids and Lagrangian Particles. In: Topics in Mathematical Fluid Mechanics. Lecture Notes in Mathematics(), vol 2073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36297-2_1

Download citation

Publish with us

Policies and ethics