Skip to main content

Sparse Roadmap Spanners

  • Conference paper
Algorithmic Foundations of Robotics X

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 86))

Abstract

Asymptotically optimal planners like prm* guarantee that solutions approach optimal as iterations increase. Roadmaps with this property, however, may grow too large. If optimality is relaxed, asymptotically near-optimal solutions produce sparser graphs by not including all edges. The idea stems from graph spanners, which produce sparse subgraphs that guarantee near-optimal paths. Existing asymptotically optimal and near-optimal planners, however, include all sampled configurations as roadmap nodes, meaning only infinite graphs have the desired properties. This work proposes an approach, called spars, that provides the following asymptotic properties: (a) completeness, (b) near-optimality and (c) the probability of adding nodes to the spanner converges to zero as iterations increase, which suggests that finite-size data structures may exist that have near-optimality properties. The method brings together ideas from various planners but deviates from existing integrations of prm* with graph spanners. Simulations for rigid bodies show that spars indeed provides small roadmaps and results in faster query resolution. The rate of node addition is shown to decrease over time and the quality of solutions is even better than the theoretical bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.: Compact Representations for Shortest-Path Queries. Appeared at the IROS 2012 Workshop on Progress and Open Problems in Motion Planning (2011)

    Google Scholar 

  2. Amato, N.M., Bayazit, O.B., Dale, L.K., Jones, C., Vallejo, D.: OBPRM: An Obstacle-based PRM for 3D Workspaces. In: WAFR, pp. 155–168 (1998)

    Google Scholar 

  3. Baswana, S., Sen, S.: A Simple and Linear Time Randomized Algorithm for Computing Spanners in Weighted Graphs. Random Structures and Algorithms 30(4), 532–563 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Geraerts, R., Overmars, M.H.: Creating High-Quality Roadmaps for Motion Planning in Virtual Environments. In: IROS, Beijing, China, pp. 4355–4361 (2006)

    Google Scholar 

  5. Hsu, D., Kavraki, L., Latombe, J.C., Motwani, R., Sorkin, S.: On Finding Narrow Passages with Probabilistic Roadmap Planners. In: WAFR, Houston, TX (1998)

    Google Scholar 

  6. Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized Kinodynamic Motion Planning with Moving Obstacles. IJRR 21(3), 233–255 (2002)

    Google Scholar 

  7. Jaillet, L., Simeon, T.: Path Deformation Roadmaps. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds.) Algotithmic Foundation Robotics VII. STAR, vol. 47, pp. 19–34. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Kallman, M., Mataric, M.: Motion Planning Using Dynamic Roadmaps. In: ICRA, New Orleands, LA, vol. 5, pp. 4399–4404 (2004)

    Google Scholar 

  9. Karaman, S., Frazzoli, E.: Sampling-based Algorithms for Optimal Motion Planning. IJRR 30(7), 846–894 (2011)

    Google Scholar 

  10. Kavraki, L.E., Kolountzakis, M.N., Latombe, J.C.: Analysis of Probabilistic Roadmaps for Path Planning. IEEE TRA 14(1), 166–171 (1998)

    Google Scholar 

  11. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces. IEEE TRA 12(4), 566–580 (1996)

    Google Scholar 

  12. Ladd, A.M., Kavraki, L.E.: Measure Theoretic Analysis of Probabilistic Path Planning. IEEE TRA 20(2), 229–242 (2004)

    Google Scholar 

  13. LaValle, S.M., Kuffner, J.J.: Randomized Kinodynamic Planning. IJRR 20, 378–400 (2001)

    Google Scholar 

  14. Li, Y., Bekris, K.E.: Learning Approximate Cost-to-Go Metrics to Improve Sampling-based Motion Planning. In: IEEE ICRA, Shanghai, China (2011)

    Google Scholar 

  15. Marble, J.D., Bekris, K.E.: Asymptotically Near-Optimal is Good Enough for Motion Planning. In: ISRR, Flagstaff, AZ (2011)

    Google Scholar 

  16. Marble, J.D., Bekris, K.E.: Towards Small Asymptotically Near-Optimal Roadmaps. In: IEEE ICRA, Minnesota, MN (2012)

    Google Scholar 

  17. Nechushtan, O., Raveh, B., Halperin, D.: Sampling-Diagram Automata: A Tool for Analyzing Path Quality in Tree Planners. In: Hsu, D., Isler, V., Latombe, J.-C., Lin, M.C. (eds.) Algorithmic Foundations of Robotics IX. STAR, vol. 68, pp. 285–301. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Nieuwenhuisen, D., Overmars, M.H.: Using Cycles in Probabilistic Roadmap Graphs. In: IEEE ICRA, pp. 446–452 (2004)

    Google Scholar 

  19. Peleg, D., Schäffer, A.: Graph Spanners. Journal of Graph Theory 13(1), 99–116 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Raveh, B., Enosh, A., Halperin, D.: A Little More, a Lot Better: Improving Path Quality by a Path-Merging Algorithm. IEEE TRO 27(2), 365–370 (2011)

    Google Scholar 

  21. Sanchez, G., Latombe, J.C.: A Single-Query, Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking. In: ISRR, pp. 403–418 (2001)

    Google Scholar 

  22. Schmitzberger, E., Bouchet, J.L., Dufaut, M., Wolf, D., Husson, R.: Capture of Homotopy Classes with Probabilistic Roadmap. In: IEEE/RSJ IROS, pp. 2317–2322 (2002)

    Google Scholar 

  23. Simeon, T., Laumond, J.P., Nissoux, C.: Visibility-based Probabilistic Roadmaps for Motion Planning. Advanced Robotics Journal 41(6), 477–494 (2000)

    Article  Google Scholar 

  24. Varadhan, G., Manocha, D.: Star-shaped Roadmaps: A Deterministic Sampling Approach for Complete Motion Planning. IJRR (2007)

    Google Scholar 

  25. Xie, D., Morales, M., Pearce, R., Thomas, S., Lien, J.L., Amato, N.M.: Incremental Map Generation (IMG). In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds.) Algorithmic Foundations of Robotics. STAR, vol. 47, pp. 53–68. Springer, Heidelberg (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dobson, A., Krontiris, A., Bekris, K.E. (2013). Sparse Roadmap Spanners. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds) Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36279-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36279-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36278-1

  • Online ISBN: 978-3-642-36279-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics