Skip to main content

A Personalized Molecular Pathogenesis of MDS

  • Chapter
  • First Online:
Myelodysplastic Syndromes

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 1249 Accesses

Abstract

The past few years have witnessed rapid progress in the understanding of disease initiation in MDS. Chromosomal abnormalities are seen in about 50 % of patients, with chromosome 5, 7, 8, 11, and 20 most commonly affected. In those with normal karyotype, evidence of recurrent structural abnormalities is missed even with more sophisticated technology such as single-nucleotide polymorphism array (SNPa). In recent years, molecular alterations have deepened our perception of disease heterogeneity and reinforced the clinical observation that treatment response does not occur in stereotyped patterns. In fact, there is growing and convincing evidence that disease heterogeneity and response to treatment are strongly associated with genotypic and epigenetic abnormalities. Globally, MDS genome is impacted by specific mutations that can be classified as mutations that induce chromatin modification, mutations altering spliceosome machinery, and those affecting oncogenes and tumor suppressor genes. The link between chromosomal abnormalities, mutations, disease phenotype, and patterns of treatment response represents a promising challenge that continues to be unraveled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacher U, Kern W, Alpermann T, Schnittger S, Haferlach C, Haferlach T (2012) Prognoses of MDS subtypes RARS, RCMD and RCMD-RS are comparable but cytogenetics separates a subgroup with inferior clinical course. Leuk Res 36(7):826–831

    Article  PubMed  Google Scholar 

  • Barlow JL, Drynan LF, Trim NL, Erber WN, Warren AJ, McKenzie AN (2010) New insights into 5q− syndrome as a ribosomopathy. Cell Cycle 9(21):4286–4293

    Article  PubMed  CAS  Google Scholar 

  • Baylin SB (2008) Stem cells, cancer, and epigenetics. In: StemBook. Stephen B. Baylin, Cambridge

    Google Scholar 

  • Bejar R, Levine R, Ebert BL (2011a) Unraveling the molecular pathophysiology of myelodysplastic syndromes. J Clin Oncol 29(5):504–515

    Article  PubMed  CAS  Google Scholar 

  • Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G et al (2011b) Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 364(26):2496–2506

    Article  PubMed  CAS  Google Scholar 

  • Bejar R, Stevenson KE, Caughey BA, Abdel-Wahab O, Steensma DP, Galili N et al (2012) Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol 30(27):3376–3382

    Article  PubMed  Google Scholar 

  • Bernard OA, Delhommeau F, Fontenay M, Vainchenker W (2009) Mutations in TET2 in myeloid cancers. Med Sci (Paris) 25(10):785–788

    Article  Google Scholar 

  • Bernasconi P, Klersy C, Boni M, Cavigliano PM, Giardini I, Rocca B et al (2010) Does cytogenetic evolution have any prognostic relevance in myelodysplastic syndromes? A study on 153 patients from a single institution. Ann Hematol 89(6):545–551

    Article  PubMed  Google Scholar 

  • Boissinot S, Entezam A, Young L, Munson PJ, Furano AV (2004) The insertional history of an active family of L1 retrotransposons in humans. Genome Res 14(7):1221–1231

    Article  PubMed  CAS  Google Scholar 

  • Boultwood J, Pellagatti A, McKenzie AN, Wainscoat JS (2010a) Advances in the 5q− syndrome. Blood 116(26):5803–5811

    Article  PubMed  CAS  Google Scholar 

  • Boultwood J, Perry J, Pellagatti A, Fernandez-Mercado M, Fernandez-Santamaria C, Calasanz MJ et al (2010b) Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia 24(5):1062–1065

    Article  PubMed  CAS  Google Scholar 

  • Braun T, de Botton S, Taksin AL, Park S, Beyne-Rauzy O, Coiteux V et al (2011) Characteristics and outcome of myelodysplastic syndromes (MDS) with isolated 20q deletion: a report on 62 cases. Leuk Res 35(7):863–867

    Article  PubMed  Google Scholar 

  • Buonamici S, Li D, Chi Y, Zhao R, Wang X, Brace L et al (2004) EVI1 induces myelodysplastic syndrome in mice. J Clin Invest 114(5):713–719

    PubMed  CAS  Google Scholar 

  • Caramazza D, Ketterling RP, Knudson RA, Hanson CA, Siragusa S, Pardanani A et al (2010) Trisomy 11: prevalence among 22,403 unique patient cytogenetic studies and clinical correlates. Leukemia 24(5):1092–1094

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty S, Senyuk V, Sitailo S, Chi Y, Nucifora G (2001) Interaction of EVI1 with cAMP-responsive element-binding protein-binding protein (CBP) and p300/CBP-associated factor (P/CAF) results in reversible acetylation of EVI1 and in co-localization in nuclear speckles. J Biol Chem 276(48):44936–44943

    Article  PubMed  CAS  Google Scholar 

  • Collado R, Badia L, Garcia S, Sanchez H, Prieto F, Carbonell F (1999) Chromosome 11 abnormalities in myelodysplastic syndromes. Cancer Genet Cytogenet 114(1):58–61

    Article  PubMed  CAS  Google Scholar 

  • Cordoba I, Gonzalez-Porras JR, Nomdedeu B, Luno E, de Paz R, Such E et al (2012) Better prognosis for patients with del(7q) than for patients with monosomy 7 in myelodysplastic syndrome. Cancer 118(1):127–133

    Article  PubMed  CAS  Google Scholar 

  • Cui W, Sun J, Cotta CV, Medeiros LJ, Lin P (2011) Myelodysplastic syndrome with inv(3)(q21q26.2) or t(3;3)(q21;q26.2) has a high risk for progression to acute myeloid leukemia. Am J Clin Pathol 136(2): 282–288

    Article  PubMed  Google Scholar 

  • Damm F, Kosmider O, Gelsi-Boyer V, Renneville A, Carbuccia N, Hidalgo-Curtis C et al (2012) Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood 119(14):3211–3218

    Article  PubMed  CAS  Google Scholar 

  • Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A et al (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360(22):2289–2301

    Article  PubMed  Google Scholar 

  • Dicker F, Haferlach C, Sundermann J, Wendland N, Weiss T, Kern W et al (2010) Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia 24(8):1528–1532

    Article  PubMed  CAS  Google Scholar 

  • Ebert BL (2009) Deletion 5q in myelodysplastic syndrome: a paradigm for the study of hemizygous deletions in cancer. Leukemia 23(7):1252–1256

    Article  PubMed  CAS  Google Scholar 

  • Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N et al (2008) Identification of RPS14 as a 5q− syndrome gene by RNA interference screen. Nature 451(7176): 335–339

    Article  PubMed  CAS  Google Scholar 

  • Ergen AV, Goodell MA (2010) Mechanisms of hematopoietic stem cell aging. Exp Gerontol 45(4):286–290

    Article  PubMed  CAS  Google Scholar 

  • Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42(8):722–726

    Article  PubMed  CAS  Google Scholar 

  • Estecio MR, Gallegos J, Vallot C, Castoro RJ, Chung W, Maegawa S et al (2010) Genome architecture marked by retrotransposons modulates predisposition to DNA methylation in cancer. Genome Res 20(10):1369–1382

    Article  PubMed  CAS  Google Scholar 

  • Flach J, Dicker F, Schnittger S, Schindela S, Kohlmann A, Haferlach T et al (2011) An accumulation of cytogenetic and molecular genetic events characterizes the progression from MDS to secondary AML: an analysis of 38 paired samples analyzed by cytogenetics, molecular mutation analysis and SNP microarray profiling. Leukemia 25(4):713–718

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli S, Di Cara A, Neb-Gulati A, Natt F, Schwemberger S, Hall J et al (2009) Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol 11(4): 501–508

    Article  PubMed  CAS  Google Scholar 

  • Galili N, Cerny J, Raza A (2007) Current treatment options: impact of cytogenetics on the course of myelodysplasia. Curr Treat Options Oncol 8(2):117–128

    Article  PubMed  Google Scholar 

  • Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G et al (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89(6):2079–2088

    PubMed  CAS  Google Scholar 

  • Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F et al (2012) Revised international prognostic scoring system for myelodysplastic syndromes. Blood 120(12):2454–2465

    Article  PubMed  CAS  Google Scholar 

  • Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH et al (2010) Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116(3):354–365

    Article  PubMed  CAS  Google Scholar 

  • Groschel S, Lugthart S, Schlenk RF, Valk PJ, Eiwen K, Goudswaard C et al (2010) High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J Clin Oncol 28(12):2101–2107

    Article  PubMed  CAS  Google Scholar 

  • Gurevich I, Luthra R, Konoplev SN, Yin CC, Medeiros LJ, Lin P (2011) Refractory anemia with ring sideroblasts associated with marked thrombocytosis: a mixed group exhibiting a spectrum of morphologic findings. Am J Clin Pathol 135(3):398–403

    Article  PubMed  Google Scholar 

  • Haase D, Germing U, Schanz J, Pfeilstocker M, Nosslinger T, Hildebrandt B et al (2007) New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 110(13):4385–4395

    Article  PubMed  CAS  Google Scholar 

  • Heilig CE, Loffler H, Mahlknecht U, Janssen JW, Ho AD, Jauch A et al (2010) Chromosomal instability correlates with poor outcome in patients with myelodysplastic syndromes irrespectively of the cytogenetic risk group. J Cell Mol Med 14(4):895–902

    Article  PubMed  Google Scholar 

  • Hussain FT, Nguyen EP, Raza S, Knudson R, Pardanani A, Hanson CA et al (2012) Sole abnormalities of chromosome 7 in myeloid malignancies: spectrum, histopathologic correlates, and prognostic implications. Am J Hematol 87(7):684–686

    Article  PubMed  CAS  Google Scholar 

  • Ito Y (2004) Oncogenic potential of the RUNX gene family: ‘overview’. Oncogene 23(24):4198–4208

    Article  PubMed  CAS  Google Scholar 

  • Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466(7310):1129–1133

    Article  PubMed  CAS  Google Scholar 

  • Itzykson R, Kosmider O, Cluzeau T, Mansat-De Mas V, Dreyfus F, Beyne-Rauzy O et al (2011) Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia 25(7):1147–1152

    Article  PubMed  CAS  Google Scholar 

  • Jadersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Gohring G et al (2011) TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol 29(15):1971–1979

    Article  PubMed  Google Scholar 

  • Jasek M, Gondek LP, Bejanyan N, Tiu R, Huh J, Theil KS et al (2010) TP53 mutations in myeloid malignancies are either homozygous or hemizygous due to copy number-neutral loss of heterozygosity or deletion of 17p. Leukemia 24(1):216–219

    Article  PubMed  CAS  Google Scholar 

  • Jerez A, Sugimoto Y, Makishima H, Verma A, Jankowska AM, Przychodzen B et al (2012) Loss of heterozygosity in 7q myeloid disorders: clinical associations and genomic pathogenesis. Blood 119(25):6109–6117

    Article  PubMed  CAS  Google Scholar 

  • Komrokji RS, List AF (2011) Role of lenalidomide in the treatment of myelodysplastic syndromes. Semin Oncol 38(5):648–657

    Article  PubMed  CAS  Google Scholar 

  • Kulasekararaj AG, Smith AE, Mian SA, Mohamedali AM, Krishnamurthy P, Lea NC et al (2013) TP53 mutations in myelodysplastic syndrome are strongly correlated with aberrations of chromosome 5, and correlate with adverse prognosis. Br J Haematol 160(5):660–672

    Article  PubMed  CAS  Google Scholar 

  • Langemeijer SM, Aslanyan MG, Jansen JH (2009a) TET proteins in malignant hematopoiesis. Cell Cycle 8(24):4044–4048

    Article  PubMed  CAS  Google Scholar 

  • Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M et al (2009b) Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 41(7):838–842

    Article  PubMed  CAS  Google Scholar 

  • Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363(25):2424–2433

    Article  PubMed  CAS  Google Scholar 

  • List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E et al (2006) Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 355(14):1456–1465

    Article  PubMed  CAS  Google Scholar 

  • Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH (2003) Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3(6):577–587

    Article  PubMed  CAS  Google Scholar 

  • Look AT (2005) Molecular pathogenesis of MDS. Hematology Am Soc Hematol Educ Program 156–160

    Google Scholar 

  • Lubbert M, Ruter BH, Claus R, Schmoor C, Schmid M, Germing U et al (2012) A multicenter phase II trial of decitabine as first-line treatment for older patients with acute myeloid leukemia judged unfit for induction chemotherapy. Haematologica 97(3):393–401

    Article  PubMed  CAS  Google Scholar 

  • Maciejewski JP, Risitano A, Sloand EM, Nunez O, Young NS (2002) Distinct clinical outcomes for cytogenetic abnormalities evolving from aplastic anemia. Blood 99(9):3129–3135

    Article  PubMed  CAS  Google Scholar 

  • Malcovati L, Germing U, Kuendgen A, Della Porta MG, Pascutto C, Invernizzi R et al (2007) Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol 25(23):3503–3510

    Article  PubMed  Google Scholar 

  • Malcovati L, Papaemmanuil E, Bowen DT, Boultwood J, Della Porta MG, Pascutto C et al (2011) Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 118(24):6239–6246

    Article  PubMed  CAS  Google Scholar 

  • McDermott U, Downing JR, Stratton MR (2011) Genomics and the continuum of cancer care. N Engl J Med 364(4):340–350

    Article  PubMed  CAS  Google Scholar 

  • Metzeler KH, Walker A, Geyer S, Garzon R, Klisovic RB, Bloomfield CD et al (2012) DNMT3A mutations and response to the hypomethylating agent decitabine in acute myeloid leukemia. Leukemia 26(5):1106–1107

    Article  PubMed  CAS  Google Scholar 

  • Mian SA, Smith AE, Kulasekararaj AG, Kizilors A, Mohamedali AM, Lea NC, et al (2013) Spliceosome mutations exhibit specific associations with epigenetic modifiers and proto-oncogenes mutated in myelodysplastic syndrome. Haematologica [Epub]

    Google Scholar 

  • Michaud J, Scott HS, Escher R (2003) AML1 interconnected pathways of leukemogenesis. Cancer Invest 21(1):105–136

    Article  PubMed  CAS  Google Scholar 

  • Mittelman M, Oster HS, Hoffman M, Neumann D (2010) The lower risk MDS patient at risk of rapid progression. Leuk Res 34(12):1551–1555

    Article  PubMed  Google Scholar 

  • Morishita K, Parker DS, Mucenski ML, Jenkins NA, Copeland NG, Ihle JN (1988) Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell 54(6):831–840

    Article  PubMed  CAS  Google Scholar 

  • Mufti GJ, Bennett JM, Goasguen J, Bain BJ, Baumann I, Brunning R et al (2008) Diagnosis and classification of myelodysplastic syndrome: International Working Group on Morphology of myelodysplastic syndrome (IWGM-MDS) consensus proposals for the definition and enumeration of myeloblasts and ring sideroblasts. Haematologica 93(11):1712–1717

    Article  PubMed  Google Scholar 

  • Mullican SE, Zhang S, Konopleva M, Ruvolo V, Andreeff M, Milbrandt J et al (2007) Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat Med 13(6):730–735

    Article  PubMed  CAS  Google Scholar 

  • Mullier F, Daliphard S, Garand R, Dekeyser M, Cornet Y, Luquet I et al (2012) Morphology, cytogenetics, and survival in myelodysplasia with del(20q) or ider(20q): a multicenter study. Ann Hematol 91(2):203–213

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG (2009) TET2 mutations in myelodysplasia and myeloid malignancies. Nat Genet 41(7):766–767

    Article  PubMed  CAS  Google Scholar 

  • Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tonnissen ER et al (2010) Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 42(8):665–667

    Article  PubMed  CAS  Google Scholar 

  • Nikoloski G, van der Reijden BA, Jansen JH (2012) Mutations in epigenetic regulators in myelodysplastic syndromes. Int J Hematol 95(1):8–16

    Article  PubMed  Google Scholar 

  • Nimer SD, Golde DW (1987) The 5q− abnormality. Blood 70(6):1705–1712

    PubMed  CAS  Google Scholar 

  • Padron E, Komrokji R, List AF (2011a) Biology and treatment of the 5q− syndrome. Expert Rev Hematol 4(1):61–69

    Article  PubMed  CAS  Google Scholar 

  • Padron E, Komrokji R, List AF (2011b) The 5q− syndrome: biology and treatment. Curr Treat Options Oncol 12(4):354–368

    Article  PubMed  Google Scholar 

  • Patnaik MM, Lasho TL, Hodnefield JM, Knudson RA, Ketterling RP, Garcia-Manero G et al (2011) SF3B1 mutations are prevalent in myelodysplastic syndromes with ring sideroblasts but do not hold independent prognostic value. Blood 119(2):569–572

    Article  PubMed  CAS  Google Scholar 

  • Pellagatti A, Cazzola M, Giagounidis AA, Malcovati L, Porta MG, Killick S et al (2006) Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype. Blood 108(1):337–345

    Article  PubMed  CAS  Google Scholar 

  • Pellagatti A, Jadersten M, Forsblom AM, Cattan H, Christensson B, Emanuelsson EK et al (2007) Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q− syndrome patients. Proc Natl Acad Sci U S A 104(27):11406–11411

    Article  PubMed  CAS  Google Scholar 

  • Platzbecker U, Santini V, Mufti GJ, Haferlach C, Maciejewski JP, Park S et al (2012) Update on developments in the diagnosis and prognostic evaluation of patients with myelodysplastic syndromes (MDS): consensus statements and report from an expert workshop. Leuk Res 36(3):264–270

    Article  PubMed  Google Scholar 

  • Ramirez-Herrick AM, Mullican SE, Sheehan AM, Conneely OM (2011) Reduced NR4A gene dosage leads to mixed myelodysplastic/myeloproliferative neoplasms in mice. Blood 117(9):2681–2690

    Article  PubMed  CAS  Google Scholar 

  • Rollison DE, Howlader N, Smith MT, Strom SS, Merritt WD, Ries LA et al (2008) Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001–2004, using data from the NAACCR and SEER programs. Blood 112(1):45–52

    Article  PubMed  CAS  Google Scholar 

  • Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ et al (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102(26):9194–9199

    Article  PubMed  CAS  Google Scholar 

  • Russell M, List A, Greenberg P, Woodward S, Glinsmann B, Parganas E et al (1994) Expression of EVI1 in myelodysplastic syndromes and other hematologic malignancies without 3q26 translocations. Blood 84(4):1243–1248

    PubMed  CAS  Google Scholar 

  • Sato T, Selleri C, Young NS, Maciejewski JP (1995) Hematopoietic inhibition by interferon-gamma is partially mediated through interferon regulatory factor-1. Blood 86(9):3373–3380

    PubMed  CAS  Google Scholar 

  • Schanz J, Tuchler H, Sole F, Mallo M, Luno E, Cervera J et al (2012) New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol 30(8):820–829

    Article  PubMed  Google Scholar 

  • Schneider AM, Duffield AS, Symer DE, Burns KH (2009) Roles of retrotransposons in benign and malignant hematologic disease. Cellscience 6(2):121–145

    PubMed  Google Scholar 

  • Secker-Walker LM, Mehta A, Bain B (1995) Abnormalities of 3q21 and 3q26 in myeloid malignancy: a United Kingdom Cancer Cytogenetic Group Study. Br J Haematol 91(2):490–501

    Article  PubMed  CAS  Google Scholar 

  • Selleri C, Sato T, Anderson S, Young NS, Maciejewski JP (1995) Interferon-gamma and tumor necrosis factor-alpha suppress both early and late stages of hematopoiesis and induce programmed cell death. J Cell Physiol 165(3):538–546

    Article  PubMed  CAS  Google Scholar 

  • Senyuk V, Premanand K, Xu P, Qian Z, Nucifora G (2011) The oncoprotein EVI1 and the DNA methyltransferase Dnmt3 co-operate in binding and de novo methylation of target DNA. PLoS One 6(6):e20793

    Article  PubMed  CAS  Google Scholar 

  • Shah MY, Licht JD (2011) DNMT3A mutations in acute myeloid leukemia. Nat Genet 43(4):289–290

    Article  PubMed  CAS  Google Scholar 

  • Side LE, Curtiss NP, Teel K, Kratz C, Wang PW, Larson RA et al (2004) RAS, FLT3, and TP53 mutations in therapy-related myeloid malignancies with abnormalities of chromosomes 5 and 7. Genes Chromosomes Cancer 39(3):217–223

    Article  PubMed  CAS  Google Scholar 

  • Sloand EM, Kim S, Fuhrer M, Risitano AM, Nakamura R, Maciejewski JP et al (2002) Fas-mediated apoptosis is important in regulating cell replication and death in trisomy 8 hematopoietic cells but not in cells with other cytogenetic abnormalities. Blood 100(13):4427–4432

    Article  PubMed  CAS  Google Scholar 

  • Sloand EM, Pfannes L, Chen G, Shah S, Solomou EE, Barrett J et al (2007) CD34 cells from patients with trisomy 8 myelodysplastic syndrome (MDS) express early apoptotic markers but avoid programmed cell death by up-regulation of antiapoptotic proteins. Blood 109(6):2399–2405

    Article  PubMed  CAS  Google Scholar 

  • Sole F, Espinet B, Sanz GF, Cervera J, Calasanz MJ, Luno E et al (2000) Incidence, characterization and prognostic significance of chromosomal abnormalities in 640 patients with primary myelodysplastic syndromes. Grupo cooperativo espanol de citogenetica hematologica. Br J Haematol 108(2):346–356

    Article  PubMed  CAS  Google Scholar 

  • Sole F, Luno E, Sanzo C, Espinet B, Sanz GF, Cervera J et al (2005) Identification of novel cytogenetic markers with prognostic significance in a series of 968 patients with primary myelodysplastic syndromes. Haematologica 90(9):1168–1178

    PubMed  CAS  Google Scholar 

  • Sudo K, Ema H, Morita Y, Nakauchi H (2000) Age-associated characteristics of murine hematopoietic stem cells. J Exp Med 192(9):1273–1280

    Article  PubMed  CAS  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Miyagi S, Sashida G, Chiba T, Yuan J, Mochizuki-Kashio M et al (2012) Ezh2 augments leukemogenecity by reinforcing differentiation blockage in acute myeloid leukemia. Blood 120(5):1107–1117

    Article  PubMed  CAS  Google Scholar 

  • Tefferi A, Vardiman JW (2008) Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 22(1):14–22

    Article  PubMed  CAS  Google Scholar 

  • Theilgaard-Monch K, Boultwood J, Ferrari S, Giannopoulos K, Hernandez-Rivas JM, Kohlmann A et al (2011) Gene expression profiling in MDS and AML: potential and future avenues. Leukemia 25(6):909–920

    Article  PubMed  CAS  Google Scholar 

  • Thol F, Friesen I, Damm F, Yun H, Weissinger EM, Krauter J et al (2011) Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol 29(18):2499–2506

    Article  PubMed  CAS  Google Scholar 

  • Van den Berghe H, Cassiman JJ, David G, Fryns JP, Michaux JL, Sokal G (1974) Distinct haematological disorder with deletion of long arm of no. 5 chromosome. Nature 251(5474):437–438

    Article  PubMed  Google Scholar 

  • Van den Berghe H, Vermaelen K, Mecucci C, Barbieri D, Tricot G (1985) The 5q-anomaly. Cancer Genet Cytogenet 17(3):189–255

    Article  PubMed  Google Scholar 

  • Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114(5):937–951

    Article  PubMed  CAS  Google Scholar 

  • Vinatzer U, Taplick J, Seiser C, Fonatsch C, Wieser R (2001) The leukaemia-associated transcription factors EVI-1 and MDS1/EVI1 repress transcription and interact with histone deacetylase. Br J Haematol 114(3):566–573

    Article  PubMed  CAS  Google Scholar 

  • Visconte V, Makishima H, Jankowska A, Szpurka H, Traina F, Jerez A et al (2011) SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia 26(3):542–545

    PubMed  Google Scholar 

  • Voso MT, Fabiani E, Piciocchi A, Matteucci C, Brandimarte L, Finelli C et al (2011) Role of BCL2L10 methylation and TET2 mutations in higher risk myelodysplastic syndromes treated with 5-azacytidine. Leukemia 25(12):1910–1913

    Article  PubMed  CAS  Google Scholar 

  • Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M et al (2011) Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 25(7):1153–1158

    Article  PubMed  CAS  Google Scholar 

  • Wang SA, Jabbar K, Lu G, Chen SS, Galili N, Vega F et al (2010a) Trisomy 11 in myelodysplastic syndromes defines a unique group of disease with aggressive clinicopathologic features. Leukemia 24(4):740–747

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wang XQ, Xu XP, Lin GW (2010b) Cytogenetic evolution correlates with poor prognosis in myelodysplastic syndrome. Cancer Genet Cytogenet 196(2):159–166

    Article  PubMed  CAS  Google Scholar 

  • Wu SJ, Kuo YY, Hou HA, Li LY, Tseng MH, Huang CF et al (2012) The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood 120(15): 3106–3111

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Hamaguchi H, Nagata K, Kobayashi M, Taniwaki M (1997) Tandem duplication of the MLL gene in myelodysplastic syndrome-derived overt leukemia with trisomy 11. Am J Hematol 55(1):41–45

    Article  PubMed  CAS  Google Scholar 

  • Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y et al (2011) Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 43(4):309–315

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R et al (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478(7367):64–69

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Gore MD .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rivero, G., Gore, S.D. (2013). A Personalized Molecular Pathogenesis of MDS. In: Myelodysplastic Syndromes. Hematologic Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36229-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36229-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36228-6

  • Online ISBN: 978-3-642-36229-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics