Skip to main content

Insect Wings: The Evolutionary Development of Nature’s First Flyers

  • Chapter
  • First Online:
Arthropod Biology and Evolution

Abstract

Powered flight is one of the more spectacular evolutionary novelties to have come about during the 4-billion-year history of life on Earth. Flight bestows upon the flyer another dimension in which to experience life. Suddenly, new avenues are available for dispersal, escape and avoidance, locating a suitable mate, and reaching once unobtainable resources. Moreover, wings can be so much more than merely a means to fly. Properly adapted the wings themselves may play a role in courtship, camouflage and mimicry, thermoregulation, and protection and defence. Despite the profound significance of flight, it is a challenging feat to achieve and control. Powered flight has evolved independently at least four times, three of which occur among the Amniota, while the last is far flung across the branches of the animal tree of life. It is this last lineage that was also the first to evolve this singularly successful means of locomotion, rivalling in numbers of species all other forms of life combined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abzhanov A, Kaufman TC (2000a) Embryonic expression patterns of the Hox genes of the crayfish Procambarus clarkii (Crustacea, Decapoda). Evol Dev 2:271–283

    Article  PubMed  CAS  Google Scholar 

  • Abzhanov A, Kaufman TC (2000b) Crustacean (malacostracan) Hox genes and the evolution of the arthropod trunk. Development 127:2239–2249

    PubMed  CAS  Google Scholar 

  • Alexander DE (2002) Nature’s flyers: birds, insects, and the biomechanics of flight. John’s Hopkins University Press, Baltimore

    Google Scholar 

  • Alonso J, Santarén JF (2005) Proteomic analysis of the wing imaginal discs of Drosophila melanogaster. Proteomics 5:474–489

    Article  PubMed  CAS  Google Scholar 

  • Angelini DR, Kaufman TC (2005) Comparative developmental genetics and the evolution of arthropod body plans. Annu Rev Genet 39:95–119

    Article  PubMed  CAS  Google Scholar 

  • Angelini DR, Liu PZ, Hughes CL, Kaufman TC (2005) Hox gene function and interaction in the milkweed bug Oncopeltus fasciatus (Hemiptera). Dev Biol 287:440–455

    Article  PubMed  CAS  Google Scholar 

  • Averof M (1997) Arthropod evolution: same Hox genes, different body plans. Curr Biol 7:R634–R636

    Article  PubMed  CAS  Google Scholar 

  • Averof M, Cohen SM (1997) Evolutionary origin of insect wings from ancestral gills. Nature 385:627–630

    Article  PubMed  CAS  Google Scholar 

  • Azpiazu N, Morata G (2000) Function and regulation of Homothorax in the wing imaginal disc of Drosophila. Development 127:2685–2693

    PubMed  CAS  Google Scholar 

  • Bechly G (1996) Morphologische Untersuchungen am Flügelgeäder der rezenten Libellen und deren Stammgruppenvertreter (Insecta; Pterygota; Odonata), unter besonderer Berücksichtigung der Phylo-genetischen Systematik und des Grundplanes der Odonata. Petalura 2:1402

    Google Scholar 

  • Bechly G, Brauckmann C, Zessin W, Gröning E (2001) New results concerning the morphology of the most ancient dragonflies (Insecta: Odonatoptera) from the Namurian of Hagen-Vorhalle (Germany). Z Zool Syst Evol 39:209–226

    Article  Google Scholar 

  • Beckemeyer RJ, Engel MS (2011) Upper Carboniferous insects from the Pottsville Formation of northern Alabama (Insecta: Ephemeropterida, Palaeodictyopterida, Odonatoptera). Sci Pap Nat Hist Mus Univ Kansas 44:1–19

    Google Scholar 

  • Béthoux O (2007) Emptying the Paleozoic wastebasket for insects: members of a Carboniferous ‘protorthopterous family’ reassigned to natural groups. Alavesia 1:41–48

    Google Scholar 

  • Béthoux O, Briggs DEG (2008) How Gerarus lost its head: stem-group Orthoptera and Paraneoptera revisited. Syst Entomol 33:529–547

    Article  Google Scholar 

  • Béthoux O, Nel A (2005) Some palaeozoic ‘Protorthoptera’ are ‘ancestral’ orthopteroids: major wing braces as clues to a new split among the ‘Protorthoptera’. J Syst Palaeontol 2:285–309

    Article  Google Scholar 

  • Béthoux O, Nel A, Schneider JW, Gand G (2007) Lodetiella magnifica nov. gen. and nov. sp. (Insecta: Palaeodictyoptera; Permian), an extreme situation in wing morphology of palaeopterous insects. Geobios 40:181–189

    Article  Google Scholar 

  • Béthoux O, Kristensen NP, Engel MS (2008) Hennigian phylogenetic systematics and the ‘groundplan’ vs. ‘post-groundplan’ approaches: a reply to Kukalová-Peck. Evol Biol 35:317–323

    Article  Google Scholar 

  • Beutel RG, Gorb S (2006) A revised interpretation of the evolution of attachment structures in Hexapoda with special emphasis on Mantophasmatodea. Arthropod Syst Phyl 64:3–25

    Google Scholar 

  • Blanke A, Wipfler B, Letsch H, Koch M, Beckmann F, Beutel R, Misof B (2012) Revival of Palaeoptera: head characters support a monophyletic origin of Odonata and Ephemeroptera (Insecta). Cladistics 28:560–581

    Google Scholar 

  • Bolker JA, Raff RA (1996) Developmental genetics and traditional homology. BioEssays 18:489–494

    Article  PubMed  CAS  Google Scholar 

  • Börner C (1904) Zur Systematik der Hexapoden. Zool Anz 27:511–533

    Google Scholar 

  • Boudreaux HB (1979) Arthropod phylogeny, with special reference to insects. Wiley, New York

    Google Scholar 

  • Bowsher JH, Nijhout HF (2007) Evolution of novel abdominal appendages in a sepsid fly from histoblasts, not imaginal discs. Evol Dev 9:347–354

    Article  PubMed  Google Scholar 

  • Boxshall GA (2004) The evolution of arthropod limbs. Biol Rev 79:253–300

    Article  PubMed  Google Scholar 

  • Bryant PJ (1975) Pattern formation in the imaginal wing disc of Drosophila melanogaster: fate map, regeneration and duplication. J Exp Zool 193:49–77

    Article  PubMed  CAS  Google Scholar 

  • Buratovich MA, Wilder EL (2001) The role of wingless in the development of the proximal wing hinge of Drosophila. Drosophila Info Serv 84:145–157

    Google Scholar 

  • Butler MJ, Jacobsen TL, Cain DM, Jarman MG, Hubank M, Whittle JR, Simcox A (2003) Discovery of genes with highly restricted expression patterns in the Drosophila wing disc using DNA oligonucleotide arrays. Development 130:659–670

    Article  PubMed  CAS  Google Scholar 

  • Cameron SL, Beckenbach AT, Dowton MA, Whiting MF (2006) Evidence from mitochondrial genomics on interordinal relationships in insects. Arthropod Syst Phyl 64:27–34

    Google Scholar 

  • Carpenter FM (1938) Two carboniferous insects from the vicinity of Mazon Creek, Illinois. Amer J Sci 36:445–452

    Article  Google Scholar 

  • Carpenter FM (1939) The lower permian insects of Kansas. Part 8. Additional Megasecoptera, Protodonata, Odonata, Homoptera, Psocoptera, Plecoptera, and Protoperlaria. Proc Amer Acad Arts Sci 73:29–70

    Article  Google Scholar 

  • Carpenter FM (1947) Lower permian insects from Oklahoma. Part 1. Introduction and the orders Megasecoptera, Protodonata, and Odonata. Proc Amer Acad Arts Sci 76:25–54

    Article  Google Scholar 

  • Carpenter FM (1962) A permian megasecopteron from Texas. Psyche 69:37–41

    Article  Google Scholar 

  • Carpenter FM (1963) Studies on Carboniferous insects of Commentry, France: Part V. The genus Diaphanoptera and the order Diaphanopterodea. Psyche 70:240–256

    Article  Google Scholar 

  • Carpenter FM (1966) The lower permian insects of Kansas. Part 11. The orders Protorthoptera and Orthoptera. Psyche 73:46–88

    Article  Google Scholar 

  • Carpenter FM (1987) Review of the extinct family Syntonopteridae (order uncertain). Psyche 94:373–388

    Article  Google Scholar 

  • Carpenter FM (1992) Superclass hexapoda. In: Kaesler RL (ed) Treatise on invertebrate paleontology (Part R, Arthropoda 4, Vol. 3–4). Geological Society of America, Boulder, pp. 1–655

    Google Scholar 

  • Carroll SB, Weatherbee SD, Langeland JA (1995) Homeotic genes and the regulation of insect wing number. Nature 375:58–61

    Article  PubMed  CAS  Google Scholar 

  • Casares F, Mann RS (2000) A dual role for homothorax in inhibiting wing blade development and specifying proximal wing identities in Drosophila. Development 127:1499–1508

    PubMed  CAS  Google Scholar 

  • Cavodeassi F, Rodríguez I, Modolell J (2002) Dpp signalling is a key effector of the wing-body wall subdivision of the Drosophila mesothorax. Development 129:3815–3823

    PubMed  CAS  Google Scholar 

  • de Celis JF (2003) Pattern formation in the Drosophila wing: the development of the veins. BioEssays 25:443–451

    Article  PubMed  CAS  Google Scholar 

  • de Celis JF, Diaz-Benjumea FJ (2003) Developmental basis for vein pattern variations in insect wings. Int J Dev Biol 47:653–663

    PubMed  Google Scholar 

  • Chesebro J, Hrycaj S, Mahfooz N, Popadić A (2009) Diverging functions of Scr between embryonic and post-embryonic development in a hemimetabolous insect, Oncopeltus fasciatus. Dev Biol 329:142–151

    Article  PubMed  CAS  Google Scholar 

  • Cho E, Irvine KD (2004) Action of fat, four-jointed, dachsous, and dachs in distal-to-proximal wing signaling. Development 131:4489–4500

    Article  PubMed  CAS  Google Scholar 

  • Cohen B, Simcox AA, Cohen SM (1993) Allocation of the thoracic imaginal primordia in the Drosophila embryo. Development 117:597–608

    PubMed  CAS  Google Scholar 

  • Cohen B, Wimmer EA, Cohen SM (1991) Early development of leg and wing primordia in the Drosophila embryo. Mech Dev 33:229–240

    Article  PubMed  CAS  Google Scholar 

  • Cohen SM (1993) Imaginal disc development. In: Bate M, Arias AM (eds) The development of Drosophila melanogaster, vol 2. Cold Spring Harbor Laboratory Press, Plainview, pp 747–841

    Google Scholar 

  • Crampton GC (1916) The phylogenetic origin and the nature of the wings of insects according to the paranotal theory. J N Y Entomol Soc 24:1–39

    Google Scholar 

  • Crampton GC (1924) The phylogeny and classification of insects. Pomona J Entomol Zool 16:33–47

    Google Scholar 

  • Dixey FA (1931) Development of wings in Lepidoptera. Trans Entomol Soc London 79:365–393

    Article  Google Scholar 

  • Dudley R (2000) The biomechanics of insect flight: Form, function, evolution. Princeton University Press, Princeton

    Google Scholar 

  • Dürken B (1907) Die Tracheenkiemenmuskulatur der Ephemeriden unter Berücksichtigung der Morphologie des Insektenflügels. Z wiss Zool 87:435–550

    Google Scholar 

  • Dürken B (1923) Die postembryonale Entwicklung der Tracheenkiemen und ihrer Muskulatur bei Ephemerella ignita. Zool Jahrb Anat 44:439–614

    Google Scholar 

  • Edmunds GF Jr (1972) Biogeography and evolution of Ephemeroptera. Annu Rev Entomol 17:21–42

    Article  Google Scholar 

  • Edmunds GF Jr, Travers JR (1954) The flight mechanics and evolution of the wings of Ephemeroptera, with notes on the archetype insect wing. J Wash Acad Sci 44:390–400

    Google Scholar 

  • Edwards D, Selden PA, Richardson JB, Axe L (1995) Coprolites as evidence for plant-animal interactions in Siluro-Devonian terrestrial ecosystems. Nature 377:329–331

    Article  CAS  Google Scholar 

  • Engel MS, Grimaldi DA (2004) New light shed on the oldest insect. Nature 427:627–630

    Article  PubMed  CAS  Google Scholar 

  • Forbes WTM (1924) The occurrence of nygmata in the wings of insecta: Holometabola. Entomol News 35:230–232

    Google Scholar 

  • Forbes WTM (1943) The origin of wings and venational types in insects. Amer Midland Nat 29:381–405

    Article  Google Scholar 

  • Fristrom DK, Rickoll WL (1982) The morphogenesis of imaginal discs of Drosophila. In: King RC, Akai H (eds) Insect ultrastructure, vol 1. Plenum Press, New York, pp 247–277

    Google Scholar 

  • Garrouste R, Clément G, Nel P, Engel MS, Grandcolas P, D’Haese C, Lagebro L, Denayer J, Gueriau P, Lafaite P, Olive S, Prestianni C, Nel A (2012) A complete insect from the late Devonian period. Nature 488:82–85

    Article  PubMed  CAS  Google Scholar 

  • Gaunt MW, Miles MA (2002) An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol 19:748–761

    Article  PubMed  CAS  Google Scholar 

  • González-Crespo S, Morata G (1996) Genetic evidence for the subdivision of the arthropod limb into coxopodite and telopodite. Development 122:3921–3928

    PubMed  Google Scholar 

  • Graham JB, Dudley R, Aguilar NM, Gans C (1995) Implications of the later Palaeozoic oxygen pulse for physiology and evolution. Nature 375:117–120

    Article  CAS  Google Scholar 

  • Grenier JK, Garber TL, Warren R, Whitington PM, Carroll S (1997) Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoran/arthropod clade. Curr Biol 7:547–553

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Haas F, Kukalová-Peck J (2001) Dermaptera hindwing structure and folding: new evidence for familial, ordinal and superordinal relationships within Neoptera (Insecta). Eur J Entomol 98:445–509

    Google Scholar 

  • Hall BK (1994) Homology: the hierarchical basis of comparative biology. Academic Press, San Diego

    Google Scholar 

  • Hall BK (2007) Homoplasy and homology: dichotomy or continuum? J Hum Evol 52:473–479

    Article  PubMed  Google Scholar 

  • Handlirsch A (1906–1908) Die fossilen Insekten und die Phylogenie der rezenten Formen: Ein Handbuch für Paläontologen und Zoologen. Engelmann, Leipzig

    Google Scholar 

  • Hasenfuss I (2002) A possible evolutionary pathway to insect flight starting from lepismatid organization. J Zool Syst Evol Res 40:65–81

    Article  Google Scholar 

  • Hasenfuss I (2008) The evolutionary pathway to insect flight: a tentative reconstruction. Arthropod Syst Phyl 66:19–35

    Google Scholar 

  • Held LI Jr (2002) Imaginal discs: the genetic and cellular logic of pattern formation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hennig W (1981) Insect phylogeny. Wiley, New York

    Google Scholar 

  • Hovmöller R, Pape T, Källersjö M (2002) The Paleoptera problem: Basal pterygote phylogeny inferred from 18S and 28S rDNA sequences. Cladistics 18:313–323

    Google Scholar 

  • Hubbard MD, Kukalová-Peck J (1980) Permian mayfly nymphs: new taxa and systematic characters. In: Flannagan JR, Marshall KE (eds) Advances in Ephemeroptera biology. Plenum Press, London, pp 19–31

    Chapter  Google Scholar 

  • Hughes CL, Kaufman TC (2002) Hox genes and the evolution of the arthropod body plan. Evol Dev 4:459–499

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Sasaki G, Ogawa J, Miyata T, Su Z (2011) Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Mol Phylogenet Evol 58:169–180

    Article  PubMed  CAS  Google Scholar 

  • Jeram AJ, Selden PA, Edwards D (1990) Land animals in the silurian: arachnids and myriapods from shropshire, England. Science 250:658–661

    Article  PubMed  CAS  Google Scholar 

  • Jockusch EL, Nagy LM (1997) Insect evolution: how did insect wings originate? Curr Biol 7:R358–R361

    Article  PubMed  CAS  Google Scholar 

  • Jockusch EL, Ober KA (2004) Hypothesis testing in evolutionary developmental biology: a case study from insect wings. J Hered 95:382–396

    Article  PubMed  CAS  Google Scholar 

  • Jockusch EL, Williams TA, Nagy LM (2004) The evolution of patterning of serially homologous appendages in insects. Dev Genes Evol 214:324–338

    Article  PubMed  Google Scholar 

  • Kjer KM, Carle FL, Litman J, Ware J (2006) A molecular phylogeny of Hexapoda. Arthropod Syst Phyl 64:35–44

    Google Scholar 

  • Klein T (2001) Wing disc development in the fly: the early stages. Curr Opin Genet Dev 11:470–475

    Article  PubMed  CAS  Google Scholar 

  • Klein T, Martinez Arias A (1998) Different spatial and temporal interactions between notch, wingless, and vestigial specify proximal and distal pattern elements of the wing in Drosophila. Dev Biol 194:196–212

    Article  PubMed  CAS  Google Scholar 

  • Kristensen NP (1991) Phylogeny of extant hexapods. In: CSIRO (ed) The insects of Australia 2nd ed, vol 1. Melbourne University Press, Melbourne, pp 125–140

    Google Scholar 

  • Kukalová J (1968) Permian mayfly nymphs. Psyche 75:311–327

    Google Scholar 

  • Kukalová-Peck J (1978) Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record. J Morphol 15:53–126

    Article  Google Scholar 

  • Kukalová-Peck J (1983) Origin of the insect wing and wing articulation from the arthropodan leg. Can J Zool 61:1618–1669

    Article  Google Scholar 

  • Kukalová-Peck J (1985) Ephemeroid wing venation based upon new gigantic carboniferous mayflies and basis morphological phylogeny and metamorphosis of pterygote insects (Insecta, Ephemerida). Can J Zool 63:933–955

    Article  Google Scholar 

  • Kukalová-Peck J (1991) Fossil history and the evolution of hexapod structures. In: CSIRO (ed) The insects of Australia 2nd ed, vol 1. Melbourne University Press, Melbourne, pp 141–179

    Google Scholar 

  • Kukalová-Peck J (1997) Arthropod phylogeny and ‘basal’ morphological structures. In: Fortey RA, Thomas RH (eds) Arthropod relationships (Systematics Association Special), vol 55. Chapman & Hall, London, pp 249–268

    Google Scholar 

  • Kukalová-Peck J (2009) Carboniferous protodonatoid dragonfly nymphs and the synapomorphies of Odonatoptera and Ephemeroptera (Insecta: Palaeoptera). Palaeodiversity 2:169–198

    Google Scholar 

  • Kukalová-Peck J, Beutel RG (2012) Is the Carboniferous †Adiphlebia lacoana really the “oldest beetle”? Critical reassessment and description of a new Permian beetle family. Eur J Entomol 109:633–645

    Google Scholar 

  • Kukalová-Peck J, Brauckmann C (1990) Wing folding in pterygote insects, and the oldest Diaphanopterodea from the early late carboniferous of West Germany. Can J Zool 68:1104–1111

    Article  Google Scholar 

  • Kukalová-Peck J, Peters JG, Soldán T (2009) Homologisation of the anterior articular plate in the wing base of Ephemeroptera and Odonatoptera. Aquat Insect 31:459–470

    Article  Google Scholar 

  • Kukalová-Peck J, Richardson ES Jr (1983) New Homoiopteridae (Insecta: Paleodictyoptera) with wing articulation from upper carboniferous strata of Mazon Creek, Illinois. Can J Zool 61:1670–1687

    Article  Google Scholar 

  • Labandeira CC, Beall BS, Hueber FM (1988) Early insect diversification: evidence from a lower devonian bristletail from Québec. Science 242:913–916

    Article  Google Scholar 

  • Labandeira CC, Sepkoski JJ Jr (1993) Insect diversity in the fossil record. Science 261:310–315

    Article  PubMed  CAS  Google Scholar 

  • La Greca M (1980) Origin and evolution of wings and flight in insects. Boll Zool 47:65–82

    Article  Google Scholar 

  • Lameere A (1922) Sur la nervation alaire des insectes. Bull Class Sci Acad R Belg 8:138–149

    Google Scholar 

  • Lemche H (1940) The origin of winged insects. Vidensk Medd Dansk Naturh Foren 104:127–168

    Google Scholar 

  • Madhavan MM, Schneiderman HA (1977) Histological analysis of the dynamics of growth of imaginal discs and histoblast nests during the larval development of Drosophila melanogaster. Roux’s Arch Dev Biol 183:269–305

    Google Scholar 

  • Malpighi M (1687) Opera omnia, figuris elegantissimus in aes incisis illustrata. Tomis duobus, comprehensa. Quorum catalogum sequens pagina exhibit. Robertum Littlebury, Little Brittain

    Google Scholar 

  • Martynov AV (1925) Über zwei Grundtypen der Flügel bei den Insekten und ihre Evolution. Z Morphol Ökol Tiere 4:465–501

    Article  Google Scholar 

  • Martynov AV (1938) Essays on the geological history and phylogeny of insect orders. 1. Palaeoptera and Neoptera-Polyneoptera. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR 7:1–150 (In Russian)

    Google Scholar 

  • Matsuda R (1970) Morphology and evolution of the insect thorax. Mem Entomol Soc Can 102:1–431

    Article  Google Scholar 

  • Matsuda R (1981) The origin of insect wings (Arthropoda: Insecta). Int J Insect Morphol Embryol 10:387–398

    Article  Google Scholar 

  • Mercer WF (1900) The development of the wings in the Lepidoptera. J N Y Entomol Soc 8:1–20

    Google Scholar 

  • Moczek AP, Rose DJ (2009) Differential recruitment of limb patterning genes during development and diversification of beetle horns. Proc Natl Acad Sci USA 106:8992–8997

    Article  PubMed  CAS  Google Scholar 

  • Milner MJ, Bleasby AJ, Kelly SL (1984) The role of the peripodial membrane of leg and wing imaginal discs of Drosophila melanogaster during evagination and differentiation in vitro. Roux’s Arch Dev Biol 193:180–186

    Google Scholar 

  • Morata G (2001) How drosophila appendages develop. Nature Rev 2:89–97

    Article  CAS  Google Scholar 

  • Murray FV, Tiegs OW (1935) The metamorphosis of Calandra oryzae. Quart J Micr Sci 77:405–495

    Google Scholar 

  • Nardi JB, Hardt TA, Magee-Adams SM, Osterbur DL (1985) Morphogenesis in wing imaginal discs: its relationship to changes in the extracellular matrix. Tissue Cell 17:473–490

    Article  PubMed  CAS  Google Scholar 

  • Nel A, Fleck G, Garrouste R, Gand G (2008) The Odonatoptera of the Late Permian Lodève Basin (Insecta). J Iber Geol 34:115–122

    Google Scholar 

  • Nel A, Fleck G, Garrouste R, Gand G, Lapeyrie J, Bybee SM, Prokop J (2009) Revision of Permo-Carboniferous griffenflies (Insecta: Odonatoptera: Meganisoptera) based upon new species and redescription of selected poorly known taxa from Eurasia. Palaeontogr Abt A 289:89–121

    Google Scholar 

  • Nel A, Gand G, Garric J (1999) A new family of Odonatoptera from the continental upper permian: the Lapeyriidae (Lodève Basin, France). Geobios 32:63–72

    Article  Google Scholar 

  • Ng M, Diaz-Benjumea J, Cohen SM (1995) Nubbin encodes a POU-domain protein required for proximal-distal patterning in the Drosophila wing. Development 121:589–599

    PubMed  CAS  Google Scholar 

  • Ng M, Diaz-Benjumea J, Vincent J-P, Wu J, Cohen SM (1996) Specification of the wing by localized expression of wingless protein. Nature 381:316–318

    Article  PubMed  CAS  Google Scholar 

  • Niitsu S (2003) Postembryonic development of the wing imaginal discs in the female wingless bagworm moth Eumeta variegata (Lepidoptera, Psychidae). J Morphol 257:164–170

    Article  PubMed  Google Scholar 

  • Niitsu S, Kobayashi Y (2008) The developmental process during metamorphosis that results in wing reduction in females of three species of wingless-legged bagworm moths, Taleporia trichopterella, Bacotia sakabei and Proutia sp. (Lepidoptera: Psychidae). Eur J Entomol 105:697–706

    Google Scholar 

  • Niitsu S, Lobbia S (2010) An improved method for the culture of wing discs of the wingless bagworm moth, Eumeta variegata (Lepidoptera: Psychidae). Eur J Entomol 107:687–690

    Google Scholar 

  • Ninomiya T, Yoshizawa K (2009) A revised interpretation of the wing base structure in Odonata. Syst Entomol 34:334–345

    Article  Google Scholar 

  • Niwa N, Akimoto-Kato A, Miimi T, Tojo K, Machida R, Hayashi S (2010) Evolutionary origin of the insect wing via integration of two developmental modules. Evol Dev 12:168–176

    Article  PubMed  CAS  Google Scholar 

  • Novák O (1880) Über Gryllacris bohemica, einen neuen Locustiden-Rest aus der Steinkohlenformation von Stradonitz in Böhmen. Jahrb KK Geol Reichsanstalt 30:69–74

    Google Scholar 

  • Ogden TH, Whiting MF (2003) The problem with “the Paleoptera problem:” sense and sensitivity. Cladistics 19:432–442

    Google Scholar 

  • Peterson MD, Rogers BT, Popadić A, Kaufman TC (1999) The embryonic expression pattern of labial, posterior homeotic complex genes and the teashirt homologue in an apterygote insect. Dev Genes Evol 209:77–90

    Article  PubMed  CAS  Google Scholar 

  • Powell PB (1904) The development of wings of certain beetles, and some studies of the origin of the wings of insects. J N Y Entomol Soc 12:237–243

    Google Scholar 

  • Powell PB (1905) The development of wings of certain beetles, and some studies of the origin of the wings of insects. J N Y Entomol Soc 13:5–22

    Google Scholar 

  • Pratt HS (1900) The embryonic history of imaginal discs in Melophagus ovinus L., together with an account of the earlier stages in the development of the insect. Proc Boston Soc Nat Hist 29:241–272

    Google Scholar 

  • Prokop J, Nel A (2007) An enigmatic Palaeozoic stem-group: Paoliida, designation of new taxa from the upper Carboniferous of the Czech Republic (Insecta: Paoliidae, Katerinkidae fam. n.). Afr Invertebr 48:77–86

    Google Scholar 

  • Prokop J, Nel A (2009) Systematic position of Triplosoba, hitherto the oldest mayfly from upper Carboniferous of Commentry in Central France (Insecta: Palaeodictyopterida). Syst Entomol 34:610–615

    Article  Google Scholar 

  • Prokop J, Nel A, Hoch I (2005) Discovery of the oldest known Pterygota in the lower Carboniferous of the Upper Silesian Basin in the Czech Republic (Insecta: Archaeorthoptera). Geobios 38:383–387

    Article  Google Scholar 

  • Prokop J, Nel A, Tenny A (2010) On the phylogenetic position of the palaeopteran Syntonopteroidea (Insecta: Ephemeroptera), with a new species from the upper Carboniferous of England. Org Divers Evol 10:331–340

    Article  Google Scholar 

  • Prokop J, Ren D (2007) New significant fossil insects from the upper Carboniferous of Ningxia in northern China (Palaeodictyoptera, Archaeorthoptera). Eur J Entomol 104:267–275

    Google Scholar 

  • Prokop J, Smith R, Jarzembowski E, Nel A (2006) New homoiopterids from the late Carboniferous of England (Insecta: Palaeodictyoptera). CR Palevol 5:867–873

    Article  Google Scholar 

  • Prud’homme B, Gompel N, Carroll SB (2007) Emerging principles of regulatory evolution. Proc Natl Acad Sci USA 104:8605–8612

    Article  PubMed  CAS  Google Scholar 

  • Prud’homme B, Minervino C, Hocine M, Cande JD, Aouane A, Dufour HD, Kassner VA, Gompel N (2011) Body plan innovation in treehoppers through the evolution of an extra wing-like appendage. Nature 473:83–86

    Article  PubMed  CAS  Google Scholar 

  • Pruvost P (1933) Un ancètre des libellules dans le terrain houiller de Tchécoslovaquie. Ann Soc Geol du Nord 58:149–154

    Google Scholar 

  • Quennedey A, Quennedey B (1990) Morphogenesis of the wing Anlagen in the mealworm beetle Tenebrio molitor during the last larval instar. Tissue Cell 22:721–740

    Article  PubMed  CAS  Google Scholar 

  • Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzler R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083

    Article  PubMed  CAS  Google Scholar 

  • Rehm P, Borner J, Meusemann K, von Reumont BM, Simon S, Hadrys H, Misof B, Burmester T (2011) Dating the arthropod tree based on large-scale transcriptome data. Mol Phylogenet Evol 61:880–887

    Article  PubMed  Google Scholar 

  • Ren D, Nel A, Prokop J (2008) New early griffenfly, Sinomeganeura huangheensis from the late Carboniferous of northern China (Meganisoptera: Meganeuridae). Insect Syst Evol 38:223–229

    Article  Google Scholar 

  • Riek EF, Kukalová-Peck J (1984) A new interpretation of dragonfly wing venation based upon early Carboniferous fossils from Argentina (Insecta: Odonatoidea) and basic character states in pterygote wings. Can J Zool 62:1150–1166

    Article  Google Scholar 

  • Rogers BT, Peterson MD, Kaufman TC (1997) Evolution of the insect body plan as revealed by the Sex combs reduced expression pattern. Development 124:149–157

    PubMed  CAS  Google Scholar 

  • Ross MH (1964) Pronotal wings in Blattella germanica (L.) and their possible evolutionary significance. Amer Midl Nat 71:161–180

    Article  Google Scholar 

  • Schmidt AR, Jancke S, Lindquist EE, Ragazzi E, Roghi G, Nascimbene PC, Schmidt K, Wappler T, Grimaldi DA (2012) Arthropods in amber from the Triassic period. Proc Natl Acad Sci USA 109:14796–14801

    Article  PubMed  CAS  Google Scholar 

  • Schwanwitsch BN (1943) Subdivision of Insecta Pterygota into subordinate groups. Nature 152:727–728

    Article  Google Scholar 

  • Sharov AG (1961) On the system of the orthopterous insects. In: Strouhal H, Beier M (eds) Verhandlungen: XI. Internationaler Kongreß für Entomologie, Wien 1960, Band I (Sektion I bis VI). Organisationskomittee des XI Internationalen Kongresses für Entomologie, Vienna, pp 295–296

    Google Scholar 

  • Sharov AG (1968) Phylogeny of the Orthopteroidea. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR 118:1–216 (In Russian)

    Google Scholar 

  • Shcherbakov DE (2011) The alleged Triassic palaeodictyopteran is a member of Titanoptera. Zootaxa 3044:65–68

    Google Scholar 

  • Shear WA, Bonamo PM, Grierson JD, Rolfe WDI, Smith EL, Norton RA (1984) Early land animals in North America: evidence from the Devonian age arthropods from Gilboa, New York. Science 224:492–494

    Article  PubMed  CAS  Google Scholar 

  • Simcox AA, Hersperger E, Shearn A, Whittle JRS, Cohen SM (1991) Establishment of imaginal discs and histoblast nests in Drosophila. Mech Develop 34:11–20

    Article  CAS  Google Scholar 

  • Simon S, Strauss S, von Haeseler A, Hadrys H (2009) A phylogenomic approach to resolve the basal pterygote divergence. Mol Biol Evol 26:2719–2730

    Article  PubMed  CAS  Google Scholar 

  • Sinitshenkova ND (1980) Order Dictyoneurida. Order Mischopterida. Order Permothemistida. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR 175:44–49 (In Russian)

    Google Scholar 

  • Sinitshenkova ND (2002) Superorder Dictyoneurida Handlirsch, 1906 (=Palaeodictyopteroidea). In: Rasnitsyn AP, Quicke DLJ (eds) History of insects. Kluwer, Dordrecht, pp 115–124

    Google Scholar 

  • Staniczek AH (2000) The mandible of silverfish (Insecta: Zygentoma) and mayflies (Ephemeroptera): its morphology and phylogenetic significance. Zool Anz 239:147–178

    Google Scholar 

  • Staniczek AH, Bechly G, Godunko R (2011) Coxoplectoptera, a new fossil order of Palaeoptera (Arthropoda: Insecta), with comments on the phylogeny of the stem group of mayflies (Ephemeroptera). Insect Syst Evol 42:101–138

    Article  Google Scholar 

  • Šulc K (1927) Das Tracheensystem von Lepisma (Thysanura) und Phylogenie der Pterygogenea. Acta Soc Sci Nat Morav 4:227–344

    Google Scholar 

  • Švácha P (1992) What are and what are not imaginal discs: reevaluation of some basic concepts (Insecta, Holometabola). Dev Biol 154:101–117

    Article  PubMed  Google Scholar 

  • Tannreuther GW (1910) Origin and development of the wings of Lepidoptera. Arch Entwicklung Org 29:275–286

    Article  Google Scholar 

  • Tillyard RJ (1928) Some remarks on the Devonian fossil insects from the Rhynie Chert beds, Old Red Sandstone. Trans Entomol Soc London 76:65–71

    Article  Google Scholar 

  • Tomoyasu Y, Wheeler SR, Denell RE (2005) Ultrabithorax is required for membranous wing identity in the beetle Tribolium castaneum. Nature 433:643–647

    Article  PubMed  CAS  Google Scholar 

  • Tower WL (1903) The origin and development of the wings of Coleoptera. Zool Jahrb Anat Ont 17:517–570

    Google Scholar 

  • Trautwein MD, Wiegmann BM, Beutel R, Kjer KM, Yeates DK (2012) Advances in insect phylogeny at the dawn of the postgenomic era. Annu Rev Entomol 57:449–468

    Article  PubMed  CAS  Google Scholar 

  • Truman JW, Riddiford LM (1999) The origins of insect metamorphosis. Nature 401:447–452

    Article  PubMed  CAS  Google Scholar 

  • Vigoreaux JO (2005) Nature’s versatile engine: insect flight muscle inside and out. Springer, Berlin

    Google Scholar 

  • Waddington CH (1941) The genetic control of wing development in Drosophila. J Genet 41:75–139

    Article  Google Scholar 

  • Warren RW, Nagy L, Selegue J, Gates J, Carroll S (1994) Evolution of homeotic gene regulation and function in flies and butterflies. Nature 372:458–461

    Article  PubMed  CAS  Google Scholar 

  • Wasik BR, Moczek AP (2011) Decapentaplegic (dpp) regulates the growth of a morphological novelty, beetle horns. Dev Genes Evol 221:17–27

    Article  PubMed  Google Scholar 

  • Wasik BR, Rose DJ, Moczek AP (2010) Beetle horns are regulated by the Hox gene, Sex combs reduced, in a species- and sex-specific manner. Evol Dev 12:353–362

    Article  PubMed  CAS  Google Scholar 

  • Wehman HJ (1969) Fine structure of Drosophila wing imaginal discs during early stages of metamorphosis. Dev Genes Evol 163:375–390

    Google Scholar 

  • Weismann A (1864) Die Entwicklung der Dipteren: Ein Beitrag zur Entwicklungsgeschichte der Insecten. Engelmann, Leipzig

    Book  Google Scholar 

  • Whalley P, Jarzembowski EA (1981) A new assessment of Rhyniella, the earliest known insect, from the Devonian of Rhynie, Scotland. Nature 291:317

    Article  Google Scholar 

  • Whitfield JB, Kjer KM (2008) Ancient rapid radiations of insects: challenges for phylogenetic analysis. Annu Rev Entomol 53:449–472

    Article  PubMed  CAS  Google Scholar 

  • Wigglesworth VB (1972) The principles of insect physiology, 7th edn. Chapman & Hall, London

    Google Scholar 

  • Williams JA, Carroll SB (1993) The origin, patterning and evolution of insect appendages. BioEssays 15:567–577

    Article  Google Scholar 

  • Willkommen J (2009) The tergal and pleural wing base sclerites: homologous within the basal branches of Pterygota? Aquat Insect, Suppl 31:443–457

    Article  Google Scholar 

  • Willmann R (1999) The upper Carboniferous Lithoneura lameerei (Insecta, Ephemeroptera?). Palaeont Z 73:289–302

    Google Scholar 

  • Willmann R (2008) Thuringopteryx: eine “Permische” Eintagsfliege im Buntsandstein (Insecta, Pterygota). Palaeont Z 82:95–99

    Google Scholar 

  • Wootton RJ (1972) Nymphs of Palaeodictyoptera (Insecta) from the Westphalian of England. Palaeontology 15:662–675

    Google Scholar 

  • Wootton RJ (1981) Palaeozoic insects. Annu Rev Entomol 26:319–344

    Article  Google Scholar 

  • Wootton RJ, Kukalová-Peck J (2000) Flight adaptations in Palaeozoic Palaeoptera (Insecta). Biol Rev 75:129–167

    Article  PubMed  CAS  Google Scholar 

  • Yoshizawa K (2011) Monophyletic Polyneoptera recovered by wing base structure. Syst Entomol 36:377–394

    Article  Google Scholar 

  • Yoshizawa K (2012) The treehopper’s helmet is not homologous with wings (Hemiptera: Membracidae). Syst Entomol 37:2–6

    Article  Google Scholar 

  • Zhang H, Shinmyo Y, Mito T, Miyawaki K, Sarashina I, Ohuchi H, Noji S (2005) Expression patterns of the homeotic genes Scr, Antp, Ubx, and Abd-A during embryogenesis of the cricket Gryllus bimaculatus. Gene Expr Patterns 5:491–502

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zhou C, Gai Y, Song D, Zhou K (2008) The complete mitochondrial genome of Parafronurus youi (Insecta: Ephemeroptera) and the phylogenetic position of Ephemeroptera. Gene 424:18–24

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to A. Minelli for the invitation to contribute this brief chapter concerning wing origins and evolution. Much appreciation is given to R. Ward for his comments on an earlier draft of the section on development, to I.A. Hinojosa-Díaz and A. Nawrocki for general discussion of hexapod morphology and homology, to N.P. Kristensen, A. Nel, and A. Minelli for their comments, and to T. Ohde and T. Niimi for sharing and discussing their recent findings. Illustrative figures were executed by S. Taliaferro under the direction of M.S.E. and S.R.D. and supported by the Engel Illustration Fund, University of Kansas College of Liberal Arts & Sciences. We thank the President and fellows of Harvard College for permission to use MCZ copyrighted material. We are grateful to P. Perkins for permission to study and take photographs of type specimens from F.M. Carpenter’s collection housed in the Museum of Comparative Zoology, Harvard University; C. Mellish and A.J. Ross for access to collections and permission to take photographs of Idoptilus onisciformis and Lithomantis carbonarius in the Natural History Museum, London; A. Nel for access to collections and permission to take photographs of Stenodictya pygmaea in the Museum national d’Histoire naturelle, Paris; L. Schöllmann for access to collections and permission to take photographs of Kemperala hagenensis in the LWL-Museum für Naturkunde, Münster; A.P. Rasnitsyn for access to and permission to photograph specimens in the Laboratory of Paleoentomology, Russian Academy of Sciences, Moscow; and T. Nichterl for permission to take photographs of Lithomanthis bohemica in the Naturhistorisches Museum Wien, Austria. Partial support for this work was provided by US National Science Foundation grants DEB-0542909 (to M.S.E.) and DEB-1110590 (to M.S.E., P. Cartwright, and S.R.D.), and the Grant Agency of the Czech Republic No. P210/10/0633 (to J.P.). This is a contribution of the Division of Entomology, University of Kansas Natural History Museum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Engel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engel, M.S., Davis, S.R., Prokop, J. (2013). Insect Wings: The Evolutionary Development of Nature’s First Flyers. In: Minelli, A., Boxshall, G., Fusco, G. (eds) Arthropod Biology and Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36160-9_12

Download citation

Publish with us

Policies and ethics