Skip to main content

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 437))

  • 3844 Accesses

Abstract

Since in a braking operation the shortest possible brake distance is required at all times an efficient and robust slip prevention control must be developed. The aim of this chapter is to present a control strategy based on an estimation method for the actual wheel-rail friction coefficient. A logic-based scheme that estimates a set point that prevents wheel slip is proposed. Having this estimation a conventional control algorithm maintains the system at the prescribed set point. If the external environment changes a new set point corresponding to the current condition is estimated. The estimation method is based on an adaptive observer design. The proposed control procedure does not rely on measured values of the slip ratio. The control algorithm is tested through simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L., Yi, J., Horowitz, R., Olmos, L.: Dynamic friction model-based tire-road friction estimation and emergency braking control. ASME Journal of Dynamic Systems Measurement and Control 127(1), 22–32 (2005)

    Article  Google Scholar 

  2. Besancon, G.: Remarks on nonlinear adaptive observer design. Systems and Control Letters 41(4), 271–280 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boiteux, M.: Le probléme de l’adhérence en freinage, Revue générale des chemins de fer (1986)

    Google Scholar 

  4. Drakunov, S., Özgüner, Ü., Dix, P., Ashrafi, B.: ABS control using optimum search via sliding modes. IEEE Transactions on Control Systems Technology 3, 79–85 (1995)

    Article  Google Scholar 

  5. Emicke, G.A., White, L.B.: Robust extended Kalman filtering. IEEE Transactions on Signal Processing 47(9), 2596–2599 (1999)

    Article  Google Scholar 

  6. Garcia-Riviera, M., Sanz, R., Perez-Rodriguez, J.: An anti-slipping fuzzy logic controller for a railway traction system. In: Proc. of the 6th IEEE International Conference on Fuzzy Systems, vol. (1), pp. 119–124 (1997)

    Google Scholar 

  7. Guay, M., Zhang, T.: Adaptive extremum seeking control of nonlinear dynamic systems with parametric uncertainties. Automatica 39, 1283–1293 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Haessig, D., Friedland, B.: A method for simultaneous state and parameter estimation in nonlinear systems. In: Proc. of the American Control Conference, Albuquerque, New Mexico, pp. 947–951 (1997)

    Google Scholar 

  9. Huh, K., Hong, D., Yoon, P., Kang, H., Hwang, I.: Robust wheel slip control for brake-by-wire systems. In: SAE World Congress, Detroit, pp. 01–1584 (2005)

    Google Scholar 

  10. Jiang, F., Gao, Z.: An adaptive nonlinear filter approach to the vehicle velocity estimation for ABS. In: Proc. of the Int. Conference on Control Applications, Anchorage (2000)

    Google Scholar 

  11. Marino, R., Santosuosso, G.L.: Robust adaptive observers for nonlinear systems with bounded disturbances. In: Proc. of the 38th IEEE Conference on CDC, Phoenix, Arizona, pp. 5200–5205 (1999)

    Google Scholar 

  12. Marino, R., Tomei, P.: Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems. IEEE Transactions on Automatic Control 40(7), 1300–1304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Narendra, K.S., Annaswamy, A.: Stable Adaptive Systems. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  14. Ohishi, K., Ogawa, Y., Miyashita, I., Yasukawa, S.: Anti-slip re-adhesion control of electric motor coach based on force control using disturbance observer. In: IEEE Industry Applications Conference, pp. 1001–1007 (2000)

    Google Scholar 

  15. Park, D., Kim, M., Hwang, D., Kim, Y., Lee, J.: Hybrid re-adhesion control method for traction system of high-speed railway. In: Proc. of the 5th Int. Conference on Electrical Machines and Systems, pp. 739–742 (2001)

    Google Scholar 

  16. Reif, K., Unbehauen, R.: The extended Kalman filter as an exponential observer for nonlinear systems. IEEE Transactions on Signal Processing 47(8), 2324–2328 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sado, H., Sakai, S., Hori, Y.: Road condition estimation for traction control in electric vehicle. In: Proc. of the IEEE International Symposium on Industrial Electronics, pp. 973–978 (1999)

    Google Scholar 

  18. Savaresi, S., Tanelli, M., Cantoni, C.: Mixed slip-deceleration control in automotive braking systems. ASME Journal of Dynamic Systems, Measurement, and Control 129, 20–31 (2007)

    Article  Google Scholar 

  19. Szabó, Z., Gáspár, P., Bokor, J.: Tracking design for wiener systems based on dynamic inversion. In: Proc. of the Conference on Control and Applications, CCA, Munich, Germany (2006)

    Google Scholar 

  20. Tanelli, M., Astolfi, A., Savaresi, S.: Non-local extremum seeking control for active braking control systems. In: Proc. of the Conference on Control and Applications, CCA, Munich, Germany (2006)

    Google Scholar 

  21. de Wit, C.C., Horowitz, R.: Observers for tire/road contact friction using only wheel angular velocity information. In: Proc. of the 42th IEEE Conference on Decision and Control, Maui, Hawaii, pp. 2246–2251 (2003)

    Google Scholar 

  22. Yamazaki, H., Karino, Y., Nagai, M., Kamada, T.: Wheel slip prevention control by sliding mode control for railway vehicles. In: Proc. of the International Conference on Advanced Intelligent Mechatronics, pp. 271–276 (2005)

    Google Scholar 

  23. Yamazaki, H., Nagai, M., Kamada, T.: A study of adhesion force model for wheel slip prevention control. JSME International Journal, Series C 47, 496–501 (2004)

    Article  Google Scholar 

  24. Yasuoka, I., Henmi, T., Nakazawa, Y., Aoyama, I.: Improvement of re-adhesion for commuter trains with vector control traction inverter. In: Proc. of the IEEE Power Conversion Conference, vol. (1), pp. 51–56 (1997)

    Google Scholar 

  25. Yi, J., Alvarez, L., Claeys, C., Horowitz, R.: Emergency braking control with an observer-based dynamic tire/road friction model and wheel angular velocity measurement. Vehicle System Dynamics 39(2), 81–97 (2003)

    Article  Google Scholar 

  26. Yi, J., Alvarez, L., Horowitz, R.: Adaptive emergency braking control with underestimation of friction coefficient. IEEE Transactions on Control Systems Technology 10(3), 381–392 (2002)

    Article  Google Scholar 

  27. Zhang, Q.: Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems. IEEE Transactions on Automatic Control 47(3), 525–529 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Gáspár .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gáspár, P., Szabó, Z. (2013). Observer-Based Brake Control for Railways. In: Sename, O., Gaspar, P., Bokor, J. (eds) Robust Control and Linear Parameter Varying Approaches. Lecture Notes in Control and Information Sciences, vol 437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36110-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36110-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36109-8

  • Online ISBN: 978-3-642-36110-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics