Skip to main content

Practical Leakage-Resilient Pseudorandom Objects with Minimum Public Randomness

  • Conference paper
Topics in Cryptology – CT-RSA 2013 (CT-RSA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7779))

Included in the following conference series:

Abstract

One of the main challenges in leakage-resilient cryptography is to obtain proofs of security against side-channel attacks, under realistic assumptions and for efficient constructions. In a recent work from CHES 2012, Faust et al. proposed new designs of stream ciphers and pseudorandom functions for this purpose. Yet, a remaining limitation of these constructions is that they require large amounts of public randomness to be proven leakage-resilient. In this paper, we show that tweaked designs with minimum randomness requirements can be proven leakage-resilient in minicrypt. That is, either these constructions are secure, or we are able to construct public-key cryptographic primitives from symmetric-key building blocks and their leakage functions (which is very unlikely). Hence, our results improve the practical relevance of two important leakage-resilient pseudorandom objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert, F.-X., Yu, Y.: Leftover Hash Lemma, Revisited. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 1–20. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Barak, B., Shaltiel, R., Wigderson, A.: Computational Analogues of Entropy. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 200–215. Springer, Heidelberg (2003)

    Google Scholar 

  3. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Clavier, C., Coron, J.-S., Dabbous, N.: Differential Power Analysis in the Presence of Hardware Countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Dodis, Y., Pietrzak, K.: Leakage-Resilient Pseudorandom Functions and Side-Channel Attacks on Feistel Networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 21–40. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Dodis, Y., Yu, Y.: Overcoming weak expectations. Short version appears in Information Theory Workshop ITW 2012 (2012), http://www.cs.nyu.edu/~dodis/ps/weak-expe.pdf

  7. Dubrov, B., Ishai, Y.: On the randomness complexity of efficient sampling. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC 2006), pp. 711–720 (2006)

    Google Scholar 

  8. Dziembowski, S.: On Forward-Secure Storage. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 251–270. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), pp. 293–302 (2008)

    Google Scholar 

  10. Faust, S., Pietrzak, K., Schipper, J.: Practical Leakage-Resilient Symmetric Cryptography. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 213–232. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Fuller, B., O’Neill, A., Reyzin, L.: A Unified Approach to Deterministic Encryption: New Constructions and a Connection to Computational Entropy. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. In: Proceedings of the 25th Annual Symposium on Foundations of Computer Science (FOCS 1984), pp. 464–479 (1984)

    Google Scholar 

  14. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Holenstein, T.: Key agreement from weak bit agreement. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC 2005), pp. 664–673 (2005)

    Google Scholar 

  16. Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional Computational Entropy, or Toward Separating Pseudoentropy from Compressibility. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 169–186. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of Structure in Complexity Theory Conference, pp. 134–147 (1995)

    Google Scholar 

  18. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: The 21st Annual ACM Symposium on Theory of Computing (STOC 1989), pp. 44–61 (1989)

    Google Scholar 

  19. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets of smart cards. Springer (2007)

    Google Scholar 

  21. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Medwed, M., Standaert, F.-X.: Extractors against Side-Channel Attacks: Weak or Strong? In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 256–272. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Medwed, M., Standaert, F.-X., Joux, A.: Towards Super-Exponential Side-Channel Security with Efficient Leakage-Resilient PRFs. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 193–212. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Micali, S., Reyzin, L.: Physically Observable Cryptography (Extended Abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Petit, C., Standaert, F.-X., Pereira, O., Malkin, T., Yung, M.: A block cipher based pseudo random number generator secure against side-channel key recovery. In: Abe, M., Gligor, V.D. (eds.) ASIACCS, pp. 56–65. ACM (2008)

    Google Scholar 

  26. Pietrzak, K.: Composition Implies Adaptive Security in Minicrypt. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 328–338. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  28. Pietrzak, K., Sjödin, J.: Weak Pseudorandom Functions in Minicrypt. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 423–436. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  30. Reingold, O., Trevisan, L., Tulsiani, M., Vadhan, S.P.: Dense subsets of pseudorandom sets. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), pp. 76–85 (2008)

    Google Scholar 

  31. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  32. Standaert, F.-X.: How Leaky Is an Extractor? In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 294–304. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  33. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  34. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M., Kasper, M., Mangard, S.: The World Is Not Enough: Another Look on Second-Order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  35. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.: Leakage resilient cryptography in practice. In: Towards Hardware Intrinsic Security: Foundation and Practice, pp. 105–139. Springer, Heidelberg (2010); Cryptology ePrint Archive, Report 2009/341 (2009), http://eprint.iacr.org/

  36. Tiri, K., Verbauwhede, I.: Securing Encryption Algorithms against DPA at the Logic Level: Next Generation Smart Card Technology. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  37. Yu, Y., Standaert, F.-X., Pereira, O., Yung, M.: Practical leakage-resilient pseudorandom generators. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM Conference on Computer and Communications Security, pp. 141–151. ACM (2010)

    Google Scholar 

  38. Zheng, C.J.: A uniform min-max theorem and its applications. STOC 2012, Poster (2012), http://cs.nyu.edu/~stoc2012/acceptedposters.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, Y., Standaert, FX. (2013). Practical Leakage-Resilient Pseudorandom Objects with Minimum Public Randomness. In: Dawson, E. (eds) Topics in Cryptology – CT-RSA 2013. CT-RSA 2013. Lecture Notes in Computer Science, vol 7779. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36095-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36095-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36094-7

  • Online ISBN: 978-3-642-36095-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics