Skip to main content

A Randomised Approximation Algorithm for the Hitting Set Problem

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7748))

Included in the following conference series:

  • 1215 Accesses

Abstract

Let \(\mathcal{H}=(V,\mathcal{E})\) be a hypergraph with vertex set V and edge set \(\mathcal{E} \), where n : = |V| and \(m := |{\cal E}|\). Let l be the maximum size of an edge and Δ be the maximum vertex degree. A hitting set (or vertex cover) in \(\mathcal{H}\) is a set of vertices from V in which all edges are incident. The hitting set problem is to find a hitting set of minimum cardinality. It is known that an approximation ratio of l can be achieved easily. On the other side, for constant l, an approximation ratio better than l cannot be achieved in polynomial time under the unique games conjecture (Khot and Ragev 2008). Thus breaking the l-barrier for significant classes of hypergraphs is a complexity-theoretic and algorithmically interesting problem, which has been studied by several authors (Krivelevich (1997), Halperin (2000), Okun (2005)). We propose a randomised algorithm of hybrid type for the hitting set problem, which combines LP-based randomised rounding, graphs sparsening and greedy repairing and analyse it in different environments. For hypergraphs with \(\Delta = O(n^{\frac14})\) and \(l=O(\sqrt{n})\) we achieve an approximation ratio of \(l\left(1-\frac{c}{\Delta}\right)\), for some constant c > 0, with constant probability. In the case of l-uniform hypergraphs, l and Δ being constants, we prove by analysing the expected size of the hitting set and using concentration inequalities, a ratio of \(l\left(1-\frac{l-1}{4\Delta}\right)\). Moreover, for quasi-regularisable hypergraphs, we achieve an approximation ratio of \(l\left(1-\frac{n}{8m}\right)\). We show how and when our results improve over the results of Krivelevich, Halperin and Okun.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-restrictions. ACM Trans. Algorithms (ACM) 2, 153–177 (2006)

    Article  MathSciNet  Google Scholar 

  2. Alon, N., Spencer, J.: The probabilistic method, 2nd edn. Wiley Interscience (2000)

    Google Scholar 

  3. Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted vertex cover problem. Journal of Algorithms 2, 198–203 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bar-Yehuda, R., Even, S.: A local ratio theorem for approximating weighted vertex cover problem. In: Ausiello, G., Lucertini, M. (eds.) Analysis and Design of Algorithms for Combinatorial Problems. Annals of Discrete Math., vol. 25, pp. 27–46. Elsevier, Amsterdam (1985)

    Chapter  Google Scholar 

  5. Berge, C.: Hypergraphs-combinatorics of finite sets. North Holland Mathematical Library (1989)

    Google Scholar 

  6. Chvatal, V.: A greedy heuristic for the set covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feige, U.: A treshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. Journal of Algorithms 41(2), 174–201 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frieze, A., Jerrum, M.: Improved approximation algorithms for max k-cut and max bisection. Algorithmica 18, 67–81 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Füredi, Z.: Matchings and covers in hypergraphs. Graphs and Combinatorics 4(1), 115–206 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation Algorithms for Partial Covering Problems. J. Algorithms 53(1), 55–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Halperin, E.: Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. In: ACM-SIAM Symposium on Discrete Algorithms, vol. 11, pp. 329–337 (2000)

    Google Scholar 

  13. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover problems. SIAM J. Computation 11(3), 555–556 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hall, N.G., Hochbaum, D.S.: A fast approximation for the multicovering problem. Discrete Appl. Math. 15, 35–40 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jäger, G., Srivastav, A.: Improved approximation algorithms for maximum graph partitioning problems. Journal of Combinatorial Optimization 10(2), 133–167 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. System Sci. 9, 256–278 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon. J. Comput. Syst. Sci. 74(3), 335–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krivelevich, J.: Approximate set covering in uniform hypergraphs. J. Algorithms 25(1), 118–143 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13, 383–390 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. Assoc. Comput. Mach. 41, 960–981 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. McDiarmid, C.: Concentration. In: Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B. (eds.) Probabilistic Methods for Algorithmic Discrete Mathematics, pp. 195–248. Springer, Berlin (1998)

    Chapter  Google Scholar 

  22. Peleg, D., Schechtman, G., Wool, A.: Randomized approximation of bounded multicovering problems. Algorithmica 18(1), 44–66 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Okun, M.: On approximation of the vertex cover problem in hypergraphs. Discrete Optimization (DISOPT) 2(1), 101–111 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proc. 29th ACM Symp. on Theory of Computing, pp. 475–484 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

El Ouali, M., Fohlin, H., Srivastav, A. (2013). A Randomised Approximation Algorithm for the Hitting Set Problem. In: Ghosh, S.K., Tokuyama, T. (eds) WALCOM: Algorithms and Computation. WALCOM 2013. Lecture Notes in Computer Science, vol 7748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36065-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36065-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36064-0

  • Online ISBN: 978-3-642-36065-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics