Skip to main content

The Glycocode: Translating Heparan Sulfate Fine Structure into Developmental Function

  • Chapter
  • First Online:
Extracellular Matrix in Development

Part of the book series: Biology of Extracellular Matrix ((BEM))

  • 1299 Accesses

Abstract

Heparan sulfate proteoglycans (HSPGs) are an important component of the cell surface and extracellular matrix. HSPGs function in a wide variety of biological processes, including cell adhesion, signaling, migration, and proliferation. HSPGs are an information-dense family consisting of a core protein to which one or more glycosaminoglycan (GAG) chains are attached. The information contained within the GAG chains allows for great complexity and a specificity to bind and regulate binding of growth factors and morphogens. It is therefore no surprise that HSPGs are involved in many developmental processes, such as neural migration, kidney formation, and placentation. Here we explore how the information-rich GAG chains control distinct aspects of development utilizing a “glycocode” model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baird A, Klagsbrun M (1991) The fibroblast growth factor family. Cancer Cells 3:239–243

    PubMed  CAS  Google Scholar 

  • Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J, Gallo RL, Lose EJ (1992) Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol 8:365–393

    Article  PubMed  CAS  Google Scholar 

  • Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777

    Article  PubMed  CAS  Google Scholar 

  • Bink RJ, Habuchi H, Lele Z, Dolk E, Joore J, Rauch GJ, Geisler R, Wilson SW, den Hertog J, Kimata K, Zivkovic D (2003) Heparan sulfate 6-O-sulfotransferase is essential for muscle development in Zebrafish. J Biol Chem 278:31118–31127

    Article  PubMed  CAS  Google Scholar 

  • Bottcher RT, Niehrs C (2005) Fibroblast growth factor signaling during early vertebrate development. Endocr Rev 26:63–77

    Article  PubMed  Google Scholar 

  • Bourin MC, Lindahl U (1993) Glycosaminoglycans and the regulation of blood coagulation. Biochem J 289(Pt 2):313–330

    PubMed  CAS  Google Scholar 

  • Bullock SL, Fletcher JM, Beddington RS, Wilson VA (1998) Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev 12:1894–1906

    Article  PubMed  CAS  Google Scholar 

  • Bulow HE, Hobert O (2004) Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 41:723–736

    Article  PubMed  Google Scholar 

  • Bulow HE, Berry KL, Topper LH, Peles E, Hobert O (2002) Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene kal-1. Proc Natl Acad Sci USA 99:6346–6351

    Article  PubMed  CAS  Google Scholar 

  • Burgess WH, Maciag T (1989) The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 58:575–606

    Article  PubMed  CAS  Google Scholar 

  • Cadwalader EL, Condic ML, Yost HJ (2012) 2-O-sulfotransferase regulates Wnt signaling, cell adhesion and cell cycle during zebrafish epiboly. Development 139:1296–1305

    Article  PubMed  CAS  Google Scholar 

  • Cadwallader AB, Yost HJ (2006a) Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: I. The 3-O-sulfotransferase family. Dev Dyn 235:3423–3431

    Article  PubMed  CAS  Google Scholar 

  • Cadwallader AB, Yost HJ (2006b) Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: II. The 6-O-sulfotransferase family. Dev Dyn 235:3432–3437

    Article  PubMed  CAS  Google Scholar 

  • Cadwallader AB, Yost HJ (2007) Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: III. 2-O-sulfotransferase and C5-epimerases. Dev Dyn 236: 581–586

    Article  PubMed  CAS  Google Scholar 

  • Carey DJ (1997) Syndecans: multifunctional cell-surface co-receptors. Biochem J 327(Pt 1):1–16

    PubMed  CAS  Google Scholar 

  • Chen E, Stringer SE, Rusch MA, Selleck SB, Ekker SC (2005) A unique role for 6-O sulfation modification in zebrafish vascular development. Dev Biol 284:364–376

    Article  PubMed  CAS  Google Scholar 

  • Colliec-Jouault S, Shworak NW, Liu J, de Agostini AI, Rosenberg RD (1994) Characterization of a cell mutant specifically defective in the synthesis of anticoagulantly active heparan sulfate. J Biol Chem 269:24953–24958

    PubMed  CAS  Google Scholar 

  • Dhoot GK, Gustafsson MK, Ai X, Sun W, Standiford DM, Emerson CP Jr (2001) Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293:1663–1666

    Article  PubMed  CAS  Google Scholar 

  • Esko JD, Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Invest 108:169–173

    PubMed  CAS  Google Scholar 

  • Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    Article  PubMed  CAS  Google Scholar 

  • Gorsi B, Stringer SE (2007) Tinkering with heparan sulfate sulfation to steer development. Trends Cell Biol 17:173–177

    Article  PubMed  CAS  Google Scholar 

  • Guiral EC, Faas L, Pownall ME (2010) Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. Dev Biol 341:375–388

    Article  PubMed  CAS  Google Scholar 

  • Habuchi H, Miyake G, Nogami K, Kuroiwa A, Matsuda Y, Kusche-Gullberg M, Habuchi O, Tanaka M, Kimata K (2003) Biosynthesis of heparan sulphate with diverse structures and functions: two alternatively spliced forms of human heparan sulphate 6-O-sulphotransferase-2 having different expression patterns and properties. Biochem J 371:131–142

    Article  PubMed  CAS  Google Scholar 

  • Habuchi H, Nagai N, Sugaya N, Atsumi F, Stevens RL, Kimata K (2007) Mice deficient in heparan sulfate 6-o-sulfotransferase-1 exhibit defective heparan sulfate biosynthesis, abnormal placentation, and late embryonic lethality. J Biol Chem 282:15578–15588

    Article  PubMed  CAS  Google Scholar 

  • Hacker U, Nybakken K, Perrimon N (2005) Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 6:530–541

    Article  PubMed  Google Scholar 

  • HajMohammadi S, Enjyoji K, Princivalle M, Christi P, Lech M, Beeler D, Rayburn H, Schwartz JJ, Barzegar S, de Agostini AI, Post MJ, Rosenberg RD, Shworak NW (2003) Normal levels of anticoagulant heparan sulfate are not essential for normal hemostasis. J Clin Invest 111:989–999

    PubMed  CAS  Google Scholar 

  • Hasegawa H, Wang F (2008) Visualizing mechanosensory endings of TrkC-expressing neurons in HS3ST-2-hPLAP mice. J Comp Neurol 511:543–556

    Article  PubMed  CAS  Google Scholar 

  • Holst CR, Bou-Reslan H, Gore BB, Wong K, Grant D, Chalasani S, Carano RA, Frantz GD, Tessier-Lavigne M, Bolon B, French DM, Ashkenazi A (2007) Secreted sulfatases Sulf1 and Sulf2 have overlapping yet essential roles in mouse neonatal survival. PLoS One 2:e575

    Article  PubMed  Google Scholar 

  • Itoh N (2007) The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biol Pharm Bull 30:1819–1825

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Konishi M (2007) The zebrafish fgf family. Zebrafish 4:179–186

    Article  PubMed  CAS  Google Scholar 

  • Izvolsky KI, Lu J, Martin G, Albrecht KH, Cardoso WV (2008) Systemic inactivation of Hs6st1 in mice is associated with late postnatal mortality without major defects in organogenesis. Genesis 46:8–18

    Article  PubMed  CAS  Google Scholar 

  • Kamimura K, Fujise M, Villa F, Izumi S, Habuchi H, Kimata K, Nakato H (2001) Drosophila heparan sulfate 6-O-sulfotransferase (dHS6ST) gene. Structure, expression, and function in the formation of the tracheal system. J Biol Chem 276:17014–17021

    Article  PubMed  CAS  Google Scholar 

  • Kamimura K, Rhodes JM, Ueda R, McNeely M, Shukla D, Kimata K, Spear PG, Shworak NW, Nakato H (2004) Regulation of Notch signaling by Drosophila heparan sulfate 3-O sulfotransferase. J Cell Biol 166:1069–1079

    Article  PubMed  CAS  Google Scholar 

  • Kamimura K, Koyama T, Habuchi H, Ueda R, Masu M, Kimata K, Nakato H (2006) Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling. J Cell Biol 174: 773–778

    Article  PubMed  CAS  Google Scholar 

  • Kinnunen T, Huang Z, Townsend J, Gatdula MM, Brown JR, Esko JD, Turnbull JE (2005) Heparan 2-O-sulfotransferase, hst-2, is essential for normal cell migration in Caenorhabditis elegans. Proc Natl Acad Sci USA 102:1507–1512

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Habuchi H, Tamura K, Ide H, Kimata K (2007) Essential role of heparan sulfate 2-O-sulfotransferase in chick limb bud patterning and development. J Biol Chem 282: 19589–19597

    Article  PubMed  CAS  Google Scholar 

  • Kramer KL, Yost HJ (2003) Heparan sulfate core proteins in cell-cell signaling. Annu Rev Genet 37:461–484

    Article  PubMed  CAS  Google Scholar 

  • Kreuger J, Spillmann D, Li JP, Lindahl U (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174:323–327

    Article  PubMed  CAS  Google Scholar 

  • Lamanna WC, Kalus I, Padva M, Baldwin RJ, Merry CL, Dierks T (2007) The heparanome–the enigma of encoding and decoding heparan sulfate sulfation. J Biotechnol 129:290–307

    Article  PubMed  CAS  Google Scholar 

  • Lawrence R, Yabe T, Hajmohammadi S, Rhodes J, McNeely M, Liu J, Lamperti ED, Toselli PA, Lech M, Spear PG, Rosenberg RD, Shworak NW (2007) The principal neuronal gD-type 3-O-sulfotransferases and their products in central and peripheral nervous system tissues. Matrix Biol 26:442–455

    Article  PubMed  CAS  Google Scholar 

  • Ledin J, Staatz W, Li JP, Gotte M, Selleck S, Kjellen L, Spillmann D (2004) Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 279: 42732–42741

    Article  PubMed  CAS  Google Scholar 

  • Ledin J, Ringvall M, Thuveson M, Eriksson I, Wilen M, Kusche-Gullberg M, Forsberg E, Kjellen L (2006) Enzymatically active N-deacetylase/N-sulfotransferase-2 is present in liver but does not contribute to heparan sulfate N-sulfation. J Biol Chem 281:35727–35734

    Article  PubMed  CAS  Google Scholar 

  • Li JP, Gong F, Hagner-McWhirter A, Forsberg E, Abrink M, Kisilevsky R, Zhang X, Lindahl U (2003) Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J Biol Chem 278:28363–28366

    Article  PubMed  CAS  Google Scholar 

  • Lindahl U, Kusche-Gullberg M, Kjellen L (1998) Regulated diversity of heparan sulfate. J Biol Chem 273:24979–24982

    Article  PubMed  CAS  Google Scholar 

  • Lum DH, Tan J, Rosen SD, Werb Z (2007) Gene trap disruption of the mouse heparan sulfate 6-O-endosulfatase gene, Sulf2. Mol Cell Biol 27:678–688

    Article  PubMed  CAS  Google Scholar 

  • MacArthur JM, Bishop JR, Stanford KI, Wang L, Bensadoun A, Witztum JL, Esko JD (2007) Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J Clin Invest 117:153–164

    Article  PubMed  CAS  Google Scholar 

  • Maccarana M, Sakura Y, Tawada A, Yoshida K, Lindahl U (1996) Domain structure of heparan sulfates from bovine organs. J Biol Chem 271:17804–17810

    Article  PubMed  CAS  Google Scholar 

  • Marcum JA, Fritze L, Galli SJ, Karp G, Rosenberg RD (1983) Microvascular heparin-like species with anticoagulant activity. Am J Physiol 245:H725–H733

    PubMed  CAS  Google Scholar 

  • Martin JG, Gupta M, Xu Y, Akella S, Liu J, Dordick JS, Linhardt RJ (2009) Toward an artificial Golgi: redesigning the biological activities of heparan sulfate on a digital microfluidic chip. J Am Chem Soc 131:11041–11048

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin D, Karlsson F, Tian N, Pratt T, Bullock SL, Wilson VA, Price DJ, Mason JO (2003) Specific modification of heparan sulphate is required for normal cerebral cortical development. Mech Dev 120:1481–1488

    Article  PubMed  CAS  Google Scholar 

  • Merry CL, Bullock SL, Swan DC, Backen AC, Lyon M, Beddington RS, Wilson VA, Gallagher JT (2001) The molecular phenotype of heparan sulfate in the Hs2st−/− mutant mouse. J Biol Chem 276:35429–35434

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi S, Dejima K, Nomura K (2009) Sulfation and related genes in Caenorhabditis elegans. Trends Glycosci Glycotechnol 21:179–191

    Article  CAS  Google Scholar 

  • Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD (2002) Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J Biol Chem 277:49175–49185

    Article  PubMed  CAS  Google Scholar 

  • Neugebauer JM, Cadwallader AB, Amack JD, Bisgrove BW, Yost HJ (2013) 3-OST dependent glycocodes regulate cilia length and motility. in revision

    Google Scholar 

  • Nguyen TK, Raman K, Tran VM, Kuberan B (2011) Investigating the mechanism of the assembly of FGF1-binding heparan sulfate motifs. FEBS Lett 585:2698–2702

    Article  PubMed  CAS  Google Scholar 

  • Nogami K, Suzuki H, Habuchi H, Ishiguro N, Iwata H, Kimata K (2004) Distinctive expression patterns of heparan sulfate o-sulfotransferases and regional differences in heparan sulfate structure in chick limb buds. J Biol Chem 279:8219–8229

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Pickford CE, Holley RJ, Rushton G, Stavridis MP, Ward CM, Merry CL (2011) Specific glycosaminoglycans modulate neural specification of mouse embryonic stem cells. Stem Cells 29:629–640

    Article  PubMed  CAS  Google Scholar 

  • Plotnikov AN, Hubbard SR, Schlessinger J, Mohammadi M (2000) Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell 101:413–424

    Article  PubMed  CAS  Google Scholar 

  • Pratt T, Conway CD, Tian NM, Price DJ, Mason JO (2006) Heparan sulphation patterns generated by specific heparan sulfotransferase enzymes direct distinct aspects of retinal axon guidance at the optic chiasm. J Neurosci 26:6911–6923

    Article  PubMed  CAS  Google Scholar 

  • Presto J, Thuveson M, Carlsson P, Busse M, Wilen M, Eriksson I, Kusche-Gullberg M, Kjellen L (2008) Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation. Proc Natl Acad Sci USA 105:4751–4756

    Article  PubMed  CAS  Google Scholar 

  • Princivalle M, Hasan S, Hosseini G, de Agostini AI (2001) Anticoagulant heparan sulfate proteoglycans expression in the rat ovary peaks in preovulatory granulosa cells. Glycobiology 11:183–194

    Article  PubMed  CAS  Google Scholar 

  • Puvirajesinghe TM, Ahmed YA, Powell AK, Fernig DG, Guimond SE, Turnbull JE (2012) Array-based functional screening of heparin glycans. Chem Biol 19:553–558

    Article  PubMed  CAS  Google Scholar 

  • Raman K, Nguyen TK, Kuberan B (2011) Is N-sulfation just a gateway modification during heparan sulfate biosynthesis? FEBS Lett 585:3420–3423

    Article  PubMed  CAS  Google Scholar 

  • Rapraeger AC (2001) Molecular interactions of syndecans during development. Semin Cell Dev Biol 12:107–116

    Article  PubMed  CAS  Google Scholar 

  • Ratzka A, Kalus I, Moser M, Dierks T, Mundlos S, Vortkamp A (2008) Redundant function of the heparan sulfate 6-O-endosulfatases Sulf1 and Sulf2 during skeletal development. Dev Dyn 237:339–353

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg RD, Shworak NW, Liu J, Schwartz JJ, Zhang L (1997) Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? J Clin Invest 99:2062–2070

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M (2000) Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6:743–750

    Article  PubMed  CAS  Google Scholar 

  • Sedita J, Izvolsky K, Cardoso WV (2004) Differential expression of heparan sulfate 6-O-sulfotransferase isoforms in the mouse embryo suggests distinctive roles during organogenesis. Dev Dyn 231:782–794

    Article  PubMed  CAS  Google Scholar 

  • Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD, Cohen GH, Eisenberg RJ, Rosenberg RD, Spear PG (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99:13–22

    Article  PubMed  CAS  Google Scholar 

  • Shworak NW, Shirakawa M, Colliec-Jouault S, Liu J, Mulligan RC, Birinyi LK, Rosenberg RD (1994) Pathway-specific regulation of the synthesis of anticoagulantly active heparan sulfate. J Biol Chem 269:24941–24952

    PubMed  CAS  Google Scholar 

  • Shworak NW, Liu J, Fritze LM, Schwartz JJ, Zhang L, Logeart D, Rosenberg RD (1997) Molecular cloning and expression of mouse and human cDNAs encoding heparan sulfate D-glucosaminyl 3-O-sulfotransferase. J Biol Chem 272:28008–28019

    Article  PubMed  CAS  Google Scholar 

  • Shworak NW, HajMohammadi S, de Agostini AI, Rosenberg RD (2002) Mice deficient in heparan sulfate 3-O-sulfotransferase-1: normal hemostasis with unexpected perinatal phenotypes. Glycoconj J 19:355–361

    Article  PubMed  CAS  Google Scholar 

  • Spencer JL, Bernanke JA, Buczek-Thomas JA, Nugent MA (2010) A computational approach for deciphering the organization of glycosaminoglycans. PLoS One 5:e9389

    Article  PubMed  Google Scholar 

  • Thisse B, Thisse C (2005) Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol 287:390–402

    Article  PubMed  CAS  Google Scholar 

  • Toyoda H, Kinoshita-Toyoda A, Selleck SB (2000) Structural analysis of glycosaminoglycans in Drosophila and Caenorhabditis elegans and demonstration that tout-velu, a Drosophila gene related to EXT tumor suppressors, affects heparan sulfate in vivo. J Biol Chem 275:2269–2275

    Article  PubMed  CAS  Google Scholar 

  • Victor XV, Nguyen TK, Ethirajan M, Tran VM, Nguyen KV, Kuberan B (2009) Investigating the elusive mechanism of glycosaminoglycan biosynthesis. J Biol Chem 284:25842–25853

    Article  PubMed  CAS  Google Scholar 

  • Wakao M, Saito A, Ohishi K, Kishimoto Y, Nishimura T, Sobel M, Suda Y (2008) Sugar Chips immobilized with synthetic sulfated disaccharides of heparin/heparan sulfate partial structure. Bioorg Med Chem Lett 18:2499–2504

    Article  PubMed  CAS  Google Scholar 

  • Winterbottom EF, Pownall ME (2009) Complementary expression of HSPG 6-O-endosulfatases and 6-O-sulfotransferase in the hindbrain of Xenopus laevis. Gene Expr Patterns 9:166–172

    Article  PubMed  CAS  Google Scholar 

  • Yabe T, Hata T, He J, Maeda N (2005) Developmental and regional expression of heparan sulfate sulfotransferase genes in the mouse brain. Glycobiology 15(10):982–993

    Article  PubMed  CAS  Google Scholar 

  • Ye S, Luo Y, Lu W, Jones RB, Linhardt RJ, Capila I, Toida T, Kan M, Pelletier H, McKeehan WL (2001) Structural basis for interaction of FGF-1, FGF-2, and FGF-7 with different heparan sulfate motifs. Biochemistry 40:14429–14439

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Sen J, Stevens L, Goltz JS, Stein D (2005) Drosophila Pipe protein activity in the ovary and the embryonic salivary gland does not require heparan sulfate glycosaminoglycans. Development 132:3813–3822

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Joseph Yost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cadwallader, A.B., Yost, H.J. (2013). The Glycocode: Translating Heparan Sulfate Fine Structure into Developmental Function. In: DeSimone, D., Mecham, R. (eds) Extracellular Matrix in Development. Biology of Extracellular Matrix. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35935-4_1

Download citation

Publish with us

Policies and ethics