Skip to main content

Higher-Order and Adaptive Discontinuous Galerkin Methods Applied to Turbulent Delta Wing Flow

  • Chapter
New Results in Numerical and Experimental Fluid Mechanics VIII

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 121))

Abstract

Discontinuous Galerkin methods allow higher-order flow solutions on unstructured or locally refined meshes by increasing the polynomial degree and using curved instead of straight-sided elements. Residual-based adaptation targets at resolving all flow features. In this article, higher-order discontinuous Galerkin methods are combined with residual-based adaptation and applied to a fully turbulent subsonic flow around the second Vortex Flow Experiment (VFE-2) configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassi, F., Crivellini, A., Ghidoni, A., Rebay, S.: High-order discontinuous Galerkin discretization of transonic turbulent flows. In: 47th AIAA Aerospace Sciences Meeting (2009), AIAA 2009-180

    Google Scholar 

  2. Bassi, F., Crivellini, A., Rebay, S., Savini, M.: Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k − ω turbulence model equations. Computers & Fluids 34, 507–540 (2005)

    Article  MATH  Google Scholar 

  3. Bassi, F., Rebay, S.: A high order discontinuous Galerkin method for compressible turbulent flows. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Discontinuous Galerkin Methods. LNCSE, vol. 11, pp. 77–79. Springer (2000)

    Google Scholar 

  4. Giles, M., Süli, E.: Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numerica 11, 145–236 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hartmann, R.: Adaptive Finite Element Methods for the Compressible Euler Equations. PhD thesis, University of Heidelberg (2002)

    Google Scholar 

  6. Hartmann, R.: Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids 51(9-10), 1131–1156 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hartmann, R., Held, J., Leicht, T.: Adjoint-based error estimation and adaptive mesh refinement for the RANS and k-ω turbulence model equations. J. Comput. Phys. 230(11), 4268–4284 (2011) (in press)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hartmann, R., Held, J., Leicht, T., Prill, F.: Discontinuous Galerkin methods for computational aerodynamics – 3D adaptive flow simulation with the DLR PADGE code. Aerosp. Sci. Technol. 14, 512–519 (2010)

    Article  Google Scholar 

  9. Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. J. Comput. Phys. 183(2), 508–532 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hartmann, R., Houston, P.: Symmetric interior penalty DG methods for the compressible Navier–Stokes equations II: Goal–oriented a posteriori error estimation. Int. J. Num. Anal. Model. 3(2), 141–162 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Hummel, D., Redeker, G.: A new vortex flow experiment for computer code validation. In: RTO-AVT Symposium on “Vortex Fow and High Angle of Attack”, Loen, Norway, 7.-11.05 (2001)

    Google Scholar 

  12. Ilinca, F., Pelletier, D.: Positivity preservation and adaptive solution for the k − ε model of turbulence. AIAA J. 36(1), 44–50 (1998)

    Article  MATH  Google Scholar 

  13. Karniadakis, G., Sherwin, S.: Spectral/hp Finite Element Methods in CFD. Oxford University Press (1999)

    Google Scholar 

  14. Konrath, R., Klein, C., Engler, R., Otter, D.: Analysis of PSP results obtained for the VFE-2 65° delta wing configuration at sub-and transonic speeds. In: 44th AIAA Aerospace Sciences Meeting and Exhibit (2006), AIAA 2006-59-624

    Google Scholar 

  15. Kroll, N.: ADIGMA – A European project on the development of adaptive higher-order variational methods for aerospace applications. In: 47th AIAA Aerospace Sciences Meeting (2009), AIAA 2009-176

    Google Scholar 

  16. Landmann, B., Kessler, M., Wagner, S., Krämer, E.: A parallel discontinuous Galerkin code for the Navier-Stokes equations. In: 44th AIAA Aerospace Sciences Meeting and Exhibit (2006), AIAA 2006-111

    Google Scholar 

  17. Leicht, T., Hartmann, R.: Error estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations. J. Comput. Phys. 229(19), 7344–7360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schütte, A., Lüdeke, H.: Numerical investigations on the VFE-2 65-degree rounded leading edge delta wing using the unstructured DLR-TAU-Code. In: 46th AIAA Aerospace Sciences Meeting and Exhibit (2009), AIAA 2009-398-883

    Google Scholar 

  19. Šolín, P., Segeth, K., Doležel, I.: Higher-Order Finite Element Methods. Chapman & Hall/CRC (2004)

    Google Scholar 

  20. Wilcox, D.C.: Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 26(11), 1299–1310 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries, Inc., La Canada (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Hartmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hartmann, R. (2013). Higher-Order and Adaptive Discontinuous Galerkin Methods Applied to Turbulent Delta Wing Flow. In: Dillmann, A., Heller, G., Kreplin, HP., Nitsche, W., Peltzer, I. (eds) New Results in Numerical and Experimental Fluid Mechanics VIII. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35680-3_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35680-3_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35679-7

  • Online ISBN: 978-3-642-35680-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics