Skip to main content

A Rigorous Runtime Analysis for Quasi-Random Restarts and Decreasing Stepsize

  • Conference paper
Artificial Evolution (EA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7401))

Abstract

Multi-Modal Optimization (MMO) is ubiquitous in engineering, machine learning and artificial intelligence applications. Many algorithms have been proposed for multimodal optimization, and many of them are based on restart strategies. However, only few works address the issue of initialization in restarts. Furthermore, very few comparisons have been done, between different MMO algorithms, and against simple baseline methods. This paper proposes an analysis of restart strategies, and provides a restart strategy for any local search algorithm for which theoretical guarantees are derived. This restart strategy is to decrease some ’step-size’, rather than to increase the population size, and it uses quasi-random initialization, that leads to a rigorous proof of improvement with respect to random restarts or restarts with constant initial step-size. Furthermore, when this strategy encapsulates a (1+1)-ES with 1/5th adaptation rule, the resulting algorithm outperforms state of the art MMO algorithms while being computationally faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augr, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005, pp. 1769–1776 (2005)

    Google Scholar 

  2. Auger, A., Jebalia, M., Teytaud, O.: Algorithms (X, sigma, eta): Quasi-random Mutations for Evolution Strategies. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 296–307. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Auger, A., Teytaud, O.: Continuous lunches are free plus the design of optimal optimization algorithms. Algorithmica 57(1), 121–146 (2010)

    Google Scholar 

  4. Beyer, H.-G., Sendhoff, B.: Covariance Matrix Adaptation Revisited – The CMSA Evolution Strategy –. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN X. LNCS, vol. 5199, pp. 123–132. Springer, Heidelberg (2008)

    Google Scholar 

  5. Beyer, H.-G.: The Theory of Evolution Strategies. Springer, Heidelberg (2001)

    Google Scholar 

  6. DeJong, K.: The Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, University of Michigan, Ann Harbor (1975); Dissertation Abstract International 36(10), 5140B (University Microfilms No 76-9381)

    Google Scholar 

  7. Georgieva, A., Jordanov, I.: A hybrid meta-heuristic for global optimisation using low-discrepancy sequences of points. Computers and Operations Research - Special Issue on Hybrid Metaheuristics (in press)

    Google Scholar 

  8. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodalfunction optimization. In: Grefenstette, J.J. (ed.) ICGA, pp. 41–49. Lawrence Erlbaum Associates (1987)

    Google Scholar 

  9. Hansen, N., Kern, S.: Evaluating the CMA Evolution Strategy on Multimodal Test Functions. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004)

    Google Scholar 

  10. Harik, G.: Finding multiple solutions in problems of bounded difficulty. Technical Report 94002, University of Illinois at Urbana Champaign (1994)

    Google Scholar 

  11. Harik, G.: Finding multimodal solutions using restricted tournament selection. In: Eshelman, L.J. (ed.) Proc. Sixth International Conference on Genetic Algorithms, pp. 24–31. Morgan Kaufmann (1995)

    Google Scholar 

  12. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. of Global Optimization 13(4), 455–492 (1998)

    Google Scholar 

  13. Kimura, S., Matsumura, K.: Genetic algorithms using low-discrepancy sequences. In: GECCO, pp. 1341–1346 (2005)

    Google Scholar 

  14. L’Ecuyer, P., Lemieux, C.: Recent Advances in Randomized Quasi-Monte Carlo Methods, pp. 419–474. Kluwer Academic (2002)

    Google Scholar 

  15. Li, J., Balazs, M., Parks, G., Clarkson, P.: A species conserving genetic algorithm for multimodal function optimization. Evolutionary Computation 10(3), 207–234 (2002)

    Google Scholar 

  16. Lindemann, S.R., LaValle, S.M.: Incremental low-discrepancy lattice methods for motion planning. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2920–2927 (2003)

    Google Scholar 

  17. Mahfoud, S.W.: Niching methods for genetic algorithms. PhD thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA (1995)

    Google Scholar 

  18. Mengshoel, O.J., Goldberg, D.E.: Probabilistic crowding: Deterministic crowding with probabilisitic replacement. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, July 13-17, vol. 1, pp. 409–416. Morgan Kaufmann (1999)

    Google Scholar 

  19. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    Google Scholar 

  20. Owen, A.B.: Quasi-Monte Carlo sampling. In: Jensen, H.W. (ed.) Monte Carlo Ray Tracing: Siggraph 2003 Course 44, pp. 69–88. SIGGRAPH (2003)

    Google Scholar 

  21. Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: International Conference on Evolutionary Computation, pp. 798–803 (1996)

    Google Scholar 

  22. Singh, G., Kalyanmoy Deb, D.: Comparison of multi-modal optimization algorithms based on evolutionary algorithms. In: GECCO 2006: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 1305–1312. ACM, New York (2006)

    Google Scholar 

  23. Teytaud, F., Teytaud, O.: Log( λ ) Modifications for Optimal Parallelism. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 254–263. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Teytaud, O.: When Does Quasi-random Work? In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN X. LNCS, vol. 5199, pp. 325–336. Springer, Heidelberg (2008)

    Google Scholar 

  25. Teytaud, O., Gelly, S.: DCMA: yet another derandomization in covariance-matrix-adaptation. In: Thierens, D., et al. (eds.) ACM-GECCO 2007, pp. 955–963. ACM, New York (2007)

    Google Scholar 

  26. van den Bergh, F., Engelbrecht, A.: Cooperative learning in neural networks using particle swarm optimizers (2000)

    Google Scholar 

  27. Vandewoestyne, B., Cools, R.: Good permutations for deterministic scrambled halton sequences in terms of l2-discrepancy. Computational and Applied Mathematics 189(1,2), 341–361 (2006) bibitemiccama Vandewoestyne, B., Cools, R.: Good permutations for deterministic scrambled halton sequences in terms of l2-discrepancy. Computational and Applied Mathematics 189(1,2), 341–361 (2006)

    Google Scholar 

  28. Villemonteix, J., Vazquez, E., Walter, E.: An informational approach to the global optimization of expensive-to-evaluate functions. Journal of Global Optimization 44(4), 509–534 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yin, X., Germay, N.: A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function optimization. In: Albrecht, R.F., Steele, N.C., Reeves, C.R. (eds.) Artificial Neural Nets and Genetic Algorithms, pp. 450–457. Springer (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schoenauer, M., Teytaud, F., Teytaud, O. (2012). A Rigorous Runtime Analysis for Quasi-Random Restarts and Decreasing Stepsize. In: Hao, JK., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2011. Lecture Notes in Computer Science, vol 7401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35533-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35533-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35532-5

  • Online ISBN: 978-3-642-35533-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics