Skip to main content

Incorporating Complex Foraging of Zooplankton in Models: Role of Micro- and Mesoscale Processes in Macroscale Patterns

  • Chapter
  • First Online:
Dispersal, Individual Movement and Spatial Ecology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2071))

Abstract

There is a growing understanding that population models describing trophic interactions should benefit from the increasing knowledge of the complex foraging behavior of individuals constituting those populations. A notable example is the modelling of planktonic food chains where the foraging behavior of herbivorous zooplankton is often complicated and involves active vertical displacement (migration) in the water column with the aim of optimizing the fitness under constantly varying environmental conditions such as distribution of predators, location of food, temperature gradient, oxygen concentration, etc. Vertical migration of zooplankton takes place on different time and space scales ranging from seconds and centimeters to months and the size of the whole euphotic zone. Taking into account active foraging behavior of zooplankton would alter theoretical predictions obtained with earlier plankton models where such behavior has often been ignored—especially in the mean-field models which operate with integrated species biomasses/densities. In this paper, I revisit two important aspects of incorporating patterns of active zooplankton feeding in models, based on recent progress in field observations and experiments. Firstly, I investigate how complex foraging movement of herbivores in the column can alter the shape of the zooplankton functional response on different spatial and temporal scales—in particular, I scale up the local functional response to macroscales (the whole euphotic zone) and show the emergence of a sigmoid functional response (Holling type III) on the macroscale based on a non-sigmoid local response on microscales. Secondly, I theoretically investigate the role of intra-population variability of the feeding behavior of grazers (implying physiological and behavioral structuring of a population) in the persistence of the whole population under predation pressure. I show that structuring of the population according to feeding behavior would enhance the population persistence in a eutrophic environment thus preventing species extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.R. Abraham, The generation of plankton patchiness by turbulent stirring. Nature 391, 577–580 (1998)

    Article  Google Scholar 

  2. P. Auger, S. Charles, M. Viala, J.C. Poggiale, Aggregation and emergence in ecological modelling: integration of ecological levels. Ecol. Model. 127, 11–20 (2000)

    Article  Google Scholar 

  3. F. Bartumeus, F. Peters, S. Pueyo, C. Marrassé, J. Catalan, Helical Lévy Walks: adjusting searching statistics to resource availability in microzooplankton. Proc. Natl Acad. Sci. 100(22), 12771–12775 (2003)

    Article  Google Scholar 

  4. H.P. Batchelder, C.A. Edwards, T.M. Powell, Individual-based models of zooplankton populations in coastal upwelling regions: implications of diel vertical migration on demographic success and near shore retention. Progr. Oceanogr. 53, 307–333 (2002)

    Article  Google Scholar 

  5. B. Bautista, R.P. Harris, Copepod gut contents, ingestion rates and grazing impact on phytoplankton in relation to size structure of zooplankton and phytoplankton during a spring bloom. Mar. Ecol. Prog. Ser. 82, 41–50 (1992)

    Article  Google Scholar 

  6. A.D. Bazykin, Nonlinear Dynamics of Interacting Populations (World Scientific, Singapore, 1998)

    Google Scholar 

  7. A. Beckmann, I. Hense, Beneath the surface: characteristics of oceanic ecosystems under weak mixing conditions - a theoretical investigation. Progr. Oceanogr. 75, 771–796 (2007)

    Article  Google Scholar 

  8. M. Begon, C.R. Townsend, J.L. Harper, Ecology: From Individuals to Ecosystems, 4th edn. (Blackwell Publishing, Oxford, 2005), p. 738

    Google Scholar 

  9. D.E. Boakes, E.A. Codling, G.J. Thorn, M. Steinke, Analysis and modelling of swimming behaviour in Oxyrrhis marina. J. Plankton Res. 33, 641–649 (2011)

    Article  Google Scholar 

  10. S.M. Bollens, B.W. Frost, Predator induced diel vertical migration in a marine planktonic copepod. J. Plankton Res. 11, 1047–1065 (1989)

    Article  Google Scholar 

  11. C.M. Boyd, S.M. Smith, T. Cowles, Grazing patterns of copepods in the upwelling system off Peru. Limnol. Oceanogr. 25, 583–596 (1980)

    Article  Google Scholar 

  12. S.V. Budaev, ‘Personality’ in the guppy (Poecilia reticulata): a correlation study of exploratory behavior and social tendency. J. Compar. Psychol. 111, 399–411 (1997)

    Article  Google Scholar 

  13. M.H. Daro, Migratory and grazing behavior of copepods and vertical distributions of phytoplankton. Bull. Mar. Sci. 43, 710–729 (1988)

    Google Scholar 

  14. F. Carlotti, J.-C. Poggiale, Towards methodological approaches to implement the zooplankton component in “end to end” food-web models. Progr. Oceanogr. 84, 20–38 (2010)

    Article  Google Scholar 

  15. F. Carlotti, K.U. Wolf, A Lagrangian ensemble model of Calanus finmarchicus coupled with a1-D ecosystem model. Fisher. Oceanogr. 7, 191–204 (1998)

    Article  Google Scholar 

  16. B. Charlesworth, Selection in populations with overlapping generations. III. Conditions for genetic equilibrium. Theor. Popul. Biol. 3, 377–395 (1972)

    Article  Google Scholar 

  17. P. Chesson, M.J. Donahue, B.A. Melbourne, A.L. Sears, Scale transition theory for understanding mechanisms in metacomunities, in Metacommunities: Spatial Dynamics and Ecological Communities, ed. by M. Holyoak, A. Leibold, R.D. Holt (University of Chicago Press, Chicago, 2005), p. 513

    Google Scholar 

  18. M.G. Clerc, D. Escaff, V.M. Kenkre, Analytical studies of fronts, colonies, and patterns: combination of the Allee effect and nonlocal competition interactions. Phys. Rev. E 82, 82, 036210 (2010)

    Google Scholar 

  19. K. Coleman, D.S. Wilson, Shyness and boldness in pumpkinseed sunfish: individual differences are context-specific. Anim. Behav. 56, 927–936 (1998)

    Article  Google Scholar 

  20. C. Cosner, D.L. DeAngelis, J.S. Ault, D.B. Olson, Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56, 65–75 (1999)

    Article  MATH  Google Scholar 

  21. F.R. Cottier, G.A. Tarling, A. Wold, S. Falk-Petersen, Unsynchronised and synchronised vertical migration of zooplankton in a high Arctic fjord. Limnol. Oceanogr. 51, 2586–2599 (2006)

    Article  Google Scholar 

  22. T.J. Cowles, R.A. Desiderio, M.E. Carr, Small-scale planktonic structure: persistence and trophic consequences. Oceanography 11, 4–9 (1998)

    Article  Google Scholar 

  23. H.C. Crenshaw, L. Edelstein-Keshet, Orientation by helical motion. II. Changing the direction of the axis of motion. J. Math. Biol. 55, 213–230 (1993)

    MATH  Google Scholar 

  24. J.M. Cushing, An Introduction to Structured Population Dynamics (SIAM, Philadelphia, 1998), p. 195

    Book  MATH  Google Scholar 

  25. M.J. Dagg, K.D. Wyman, Natural ingestion rates of the copepods Neocalunus plumchrus and N. cristatus calculated from gut contents. Mar. Ecol. Prog. Ser. 13, 37–46 (1983)

    Google Scholar 

  26. M.J. Dagg, B.W. Frost, J.A. Newton, Vertical migration and feeding behavior of Calanus pacificus females during a phytoplankton bloom in Dabob Bay, US. Limnol. Oceanogr. 42, 974–980 (1997)

    Article  Google Scholar 

  27. W.R. DeMott, Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnol. Oceanogr. 27, 518–527 (1982)

    Article  Google Scholar 

  28. A. Dhooge, W. Govaerts, Y. Kuznetsov, Matcont: a matlab package for numerical bifurcation analysis of ODEs. ACM TOMS 29, 141–164 (2003). http://sourceforge.net/projects/matcont/

  29. O. Diekmann, M. Gyllenberg, J.A. Metz, S. Nakaoka, A.M. de Roos, Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example. J. Math. Biol. 61, 277–318 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. S.I. Dodson, S. Ryan, R. Tollrian, W. Lampert, Individual swimming behavior of Daphnia: effects of food, light and container size in four clones. J. Plankton Res. 19, 1537–1552 (1997)

    Article  Google Scholar 

  31. A.M. Edwards, J. Brindley, Zooplankton mortality and the dynamical behavior of plankton population models. Bull. Math. Biol. 61, 202–339 (1999)

    Google Scholar 

  32. G. Englund, K. Leonardsson, Scaling up the functional response for spatially heterogeneous systems. Ecol. Lett. 11, 440–449 (2008)

    Article  Google Scholar 

  33. G.T. Evans, The encounter speed of moving predator and prey. J. Plankton Res. 11, 11, 415–417 (1989)

    Article  Google Scholar 

  34. G.T. Evans, J.S. Parslow, A model of annual plankton cycles. Biol. Oceanogr. 3, 327–347 (1985)

    Google Scholar 

  35. A. Ferno, I. Huse, J.-E. Juell, A. Bjordal, Vertical distribution of Atlantic salmon (Salmo salar L.) in net pens: trade-off between surface light avoidance and food attraction. Aquaculture 132, 285–296 (1995)

    Google Scholar 

  36. C.L. Folt, C.W. Burns, Biological drivers of zooplankton patchiness. TREE 14, 300–305 (1999)

    Google Scholar 

  37. M. Fossheim, R. Primicerio, Habitat choice by marine zooplankton in a high-latitude ecosystem. Mar. Ecol. Prog. Ser. 364, 47–56 (2008)

    Article  Google Scholar 

  38. B.W. Frost, A threshold feeding behavior in Calanus pacificus. Limnology and Oceanography 20, 263–266 (1975)

    Article  Google Scholar 

  39. W. Gabriel, B. Thomas, Vertical migration of zooplankton as an evolutionarily stable strategy. Am. Nat. 132, 199–216 (1988)

    Article  Google Scholar 

  40. C. Gardiner, Stochastic Methods, 4th edn. (Sringer, Berlin, 2009)

    MATH  Google Scholar 

  41. W. Geller, Diurnal vertical migration of zooplankton in a temperate great lake (L. Constance): a starvation avoidance mechanism? Archiv. Hydrobiol. 74, 1–60 (1986)

    Google Scholar 

  42. W. Gentleman, A. Leising, B. Frost, S. Storm, J. Murray, Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. Deep Sea Res. II 50, 2847–2875 (2003)

    Article  Google Scholar 

  43. J. Giske, R. Rosland, J. Berntsen, O. Fiksen, Ideal free distribution of copepods under predation risk. Ecol. Model. 95, 45–59 (1997)

    Article  Google Scholar 

  44. L. Giuggioli, F.J. Sevilla, V.M. Kenkre, A generalized master equation approach to modelling anomalous transport in animal movement. J. Phys. A 42, 1–16 (2009)

    Article  MathSciNet  Google Scholar 

  45. T.C. Granata, T.D. Dickey, The fluid mechanics of copepod feeding in a turbulent flow: a theoretical approach. Progr. Oceanogr. 26, 243–261 (1991)

    Article  Google Scholar 

  46. V. Grimm, Ten years of individual-based modeling in ecology: what have we learned and what could we learn in the future? Ecol. Model. 115, 129–148 (1999)

    Article  Google Scholar 

  47. V. Grimm, S.F. Railsback, Agent-based models in ecology: patterns and alternative theories of adaptive behaviour, in Agent-Based Computational Modelling: Contributions to Economics, ed. by F.C. Billari, T. Fent, A. Prskawetz, J. Scheffran (Physica-Verlag, Heidelberg, 2006), pp. 139–152

    Google Scholar 

  48. N. Gruber, H. Frenzel, S.C. Doney, P. Marchesiello, J.C. McWilliams, J.R. Moisan, J. Oram, G.-K. Plattner, K.D. Stolzenbach, Eddy resolving simulation of plankton ecosystem dynamics in the California current system. Deep Sea Res. I 53, 1483–1516 (2006)

    Article  Google Scholar 

  49. B.P. Han, M. Straskraba, Modeling patterns of zooplankton diel vertical migration. J. Plankton Res. 20, 1463–1487 (1998)

    Article  Google Scholar 

  50. B. Hansen, K.S. Tande, U.C. Berggreen, On the trophic fate of Phaeocystis pouchetii (Hariot). III. Functional responses in grazing demonstrated on juvenile stages of Calanus finmarchicus (Copepoda) fed diatoms and Phaeocystis. J. Plankton Res. 12, 1173–1187 (1990)

    Google Scholar 

  51. M.P. Hassell, R.M. May, Aggregation in predators and insect parasites and its effect on stability. J. Anim. Ecol. 43, 567–594 (1974)

    Article  Google Scholar 

  52. L.R. Haury, J.A. McGowan, P.H. Wiebe, Patterns and processes in the time- space scales of plankton distributions, in Spatial Pattern in Plankton Communities, ed. by J.H. Steele (Plenum Press, New York 1978), pp. 277–327

    Google Scholar 

  53. A.W. Herman, T. Platt, Numerical modelling of diel carbon production and zooplankton grazing on the scotian shelf based on observational data. Ecol. Model. 18, 55–72 (1983)

    Article  Google Scholar 

  54. A.W. Herman, Vertical patterns of copepods, chlorophyll, and production in Northeastern Baffin Bay. Limnol. Oceanogr. 28, 709–719 (1983)

    Article  Google Scholar 

  55. A.G. Hirst, A.J. Bunker, Growth of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature, and body weight. Limnol. Oceanogr. 48, 1988–2010 (2003)

    Article  Google Scholar 

  56. C.S. Holling, The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 91, 293–320 (1959)

    Article  Google Scholar 

  57. Y. Iwasa, Vertical migration of zooplankton: a game between predator and prey. Am. Nat. 120, 171–180 (1982)

    Article  MathSciNet  Google Scholar 

  58. J.M. Jeschke, M. Kopp, R. Tollrian, Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biol. Rev. 79, 337–349 (2004)

    Article  Google Scholar 

  59. P. Kareiva, Population dynamics in spatially complex environments: theory and data. Phil. Trans. R. Soc. B 330, 175–190 (1990)

    Article  Google Scholar 

  60. W. Lampert, Zooplankton vertical migrations: implications for phytoplanktonzooplankton interactions. Arch. Hydrobiol. Beih. Ergebn. Limnol. 35, 69–78 (1992)

    Google Scholar 

  61. W. Lampert, Vertical distribution of zooplankton: density dependence and evidence for an ideal free distribution with costs. BMC Biol. 3, 10 (electronic) (2005)

    Google Scholar 

  62. J. Latto, M.P. Hassell, Generalist predators and the importance of spatial density dependence. Oecologia 77, 375–377 (1988)

    Article  Google Scholar 

  63. A.W. Leising, Copepod foraging in patchy habitats and thin layers using a 2-D individual based model. Mar. Ecol. Prog. Ser. 216, 167–179 (2001)

    Article  Google Scholar 

  64. A.W. Leising, P.J.S. Franks, Copepod vertical distribution within a spatially variable food source: a foraging strategy model. J. Plankton Res. 22, 999–1024 (2000)

    Article  Google Scholar 

  65. A.W. Leising, J.J. Pierson, S. Cary, B.W. Frost, Copepod foraging and predation risk within the surface layer during night-time feeding forays. J. Plankton Res. 27, 987–1001 (2005)

    Article  Google Scholar 

  66. S.A. Levin, The problem of pattern and scale in ecology: the Robert H. MacArthur Award Lecture. Ecology 73, 1943–1967 (1992)

    Google Scholar 

  67. S.H. Liu, S. Sun, B.P. Han, Diel vertical migration of zooplankton following optimal food intake under predation. J. Plankton Res. 25, 1069–1077 (2003)

    Article  Google Scholar 

  68. D.L. Mackas, C.M. Boyd, Spectral analysis of zooplankton spatial heterogeneity. Science 204, 62–64 (1979)

    Article  Google Scholar 

  69. P.S. Magal, S. Ruan (eds.), in Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics, vol. 1936, Mathematical Biosciences Subseries (Springer, Berlin, 2008), p. 345

    Google Scholar 

  70. E. Malkiel, J. Sheng, J. Katz, J.R. Strickler, The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography. J. Exp. Biol. 206, 3657–3666 (2003)

    Article  Google Scholar 

  71. J.A. Mather, R.C. Anderson, Personalities of octopuses (Octopus rubescans). J. Compar. Psychol. 107, 336–340 (1993)

    Article  Google Scholar 

  72. J.A. McLaren, Effect of temperature on growth of zooplankton and the adaptive value of vertical migration. J. Fish. Res. Board Can. 20, 685–727 (1963)

    Article  Google Scholar 

  73. J.N. McNair, M.E. Boraas, D.B. Seale, Size-structure dynamics of the rotifer chemostat: a simple physiologically structured model. Hydrobiologia 387, 469–476 (1998)

    Article  Google Scholar 

  74. J.A.J. Metz, O. Diekmann, The Dynamics of Physiologically Structured Populations (Springer, Berlin, 1986), p. 511

    MATH  Google Scholar 

  75. J. Michalski, J.-C. Poggiale, R. Arditi, P. Auger, Macroscopic dynamic effects of migrations in patchy predatorprey systems. J. Theor. Biol. 185, 459–474 (1997)

    Article  Google Scholar 

  76. A.Y. Morozov, Emergence of Holling type III zooplankton functional response: bringing together field evidence and mathematical modelling. J. Theor. Biol. 265, 45–54 (2010)

    Article  Google Scholar 

  77. A.Y. Morozov, A.G. Arashkevich, Towards a correct description of zooplankton feeding in models: Taking into account food-mediated unsynchronized vertical migration. J. Theor. Biol. 262, 262, 346–360 (2010)

    Article  MathSciNet  Google Scholar 

  78. A.Y. Morozov, E. Arashkevich, Patterns of zooplankton functional response in communities with vertical heterogeneity: a model study. Math. Mod. Nat. Phen. 3, 131–148 (2008)

    Article  MathSciNet  Google Scholar 

  79. A.Y. Morozov, E. Arashkevich, M. Reigstad, S. Falk-Petersen, Influence of spatial heterogeneity on the type of zooplankton functional response: a study based on field observations. Deep Sea Res. II 55, 2285–2291 (2008)

    Article  Google Scholar 

  80. A.Yu. Morozov, E.G. Arashkevich, A. Nikishina, K. Solovyev, Nutrient-rich plankton communities stabilized via predator-prey interactions: revisiting the role of vertical heterogeneity. Math. Med. Biol. 28, 185–215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  81. J.M. Morales, P.R. Moorcroft, J. Matthiopoulos, J.L. Frair, J.G. Kie, R.A. Powell, E.H. Merrill, D.T. Haydon, Building the bridge between animal movement and population dynamics. Phil. Trans. R. Soc. B 365, 2289–2301 (2010)

    Article  Google Scholar 

  82. M.M. Mullin, E.R. Brooks, Some consequences of distributional heterogeneity of phytoplankton and zooplankton. Limnol. Oceanogr. 21, 784–796 (1976)

    Article  Google Scholar 

  83. W.W. Murdoch, C.J. Briggs, R.M. Nisbet, W.S.C. Gurney, A. Stewart-Oaten, Aggregation and stability in metapopulation models. Am. Nat. 140, 41–58 (1992)

    Article  Google Scholar 

  84. W.W. Murdoch, R.M. Nisbet, E. McCauley, A.M. Roos, W.S.C. De Gurney, Plankton abundance and dynamics across nutrient levels: tests of hypotheses. Ecology 79, 1339–1356 (1998)

    Article  Google Scholar 

  85. G. Nachman, A functional response model of a predator population foraging in a patchy habitat. J. Anim. Ecol. 75, 948–958 (2006)

    Article  Google Scholar 

  86. R. Nathan, W.M. Getz, E. Revilla, M. Holyoak, R. Kadmon, D. Saltz, P.E. Smouse, A movement ecology paradigm for unifying organismal movement research. Proc. Nat. Acad. Sci. 105, 105, 19052–19059 (2008)

    Article  Google Scholar 

  87. A. Oaten, W.W. Murdoch, Functional response and stability in predatorprey systems. Am. Nat. 109, 289–298 (1975)

    Article  Google Scholar 

  88. E. Odum, G.W. Barrett, Fundamentals of Ecology (Thomson Brooks/Cole, Belmont, 2004), p. 598

    Google Scholar 

  89. T. Oguz, H. Ducklow, P. Malanotte-Rizzoli, J. Murray, E. Shushkina, V. Vedernikov, U. Unluata, A physical-biochemical model of plankton productivity and nitrogen cycling in the Black Sea. Deep Sea Res. 46, 597–636 (1999)

    Article  Google Scholar 

  90. M.D. Ohman, The demographic benefits of diel vertical migration by zooplankton. Ecol. Monogr. 60, 257–281 (1990)

    Article  Google Scholar 

  91. K.E. Osgood, D.M. Checkley, Seasonal variations in a deep aggregation of Calanus pacificus in the Santa Barbara Basin. Mar. Ecol. Prog. Ser. 148, 59–69 (1997)

    Article  Google Scholar 

  92. G.A. Paffenhöfer, Variability due to feeding activity of individual copepods. J. Plankton Res. 16, 617–626 (1994)

    Article  Google Scholar 

  93. G.A. Paffenhöfer, J.R. Strickler, K.D. Lewis, S. Richman, Motion behavior of nauplii and early copepodid stages of marine planktonic copepods. J. Plankton Res. 18, 1699–1715 (1996)

    Article  Google Scholar 

  94. M. Pascual, Computational ecology: From the complex to the simple and back. PLoS Comput. Biol. 1, 2 (electronic) (2005)

    Google Scholar 

  95. S.J. Pearre, Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences. Biol. Rev. 78, 1–79 (2003)

    Article  Google Scholar 

  96. S.V. Petrovskii, R. Blackshaw, Behaviourally structured populations persist longer under harsh environmental conditions. Ecol. Lett. 6, 455–462 (2003)

    Article  Google Scholar 

  97. S.V. Petrovskii, A.Y. Morozov, Dispersal in a statistically structured population: Fat tails revisited. Am. Nat. 173, 278–289 (2010)

    Article  Google Scholar 

  98. S.V. Petrovskii, R.P. Blackshaw, B.-L. Li, Persistence of structured populations with and without the Allee effect under adverse environmental conditions. Bull. Math. Biol. 70, 412–437 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  99. J.C. Poggiale, Predator-prey models in heterogeneous environment: emergence of functional response. Math. Comput. Model. 27, 63–71 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  100. D. Reale, B.Y. Gallant, M. Leblanc, M. Festa-Bianchet, Consistency of temperament in bighorn ewes and correlates with behaviour and life history. Anim. Behav. 60, 589–597 (2000)

    Article  Google Scholar 

  101. E. Saiz, A. Calbet, Scaling of feeding in marine calanoid copepods. Limnol. Oceanogr. 52, 668–675 (2007)

    Article  Google Scholar 

  102. O. Sarnelle, A.E. Wilson, Type III functional response in Daphnia. Ecology 89, 1723–1732 (2008)

    Article  Google Scholar 

  103. M. Scheffer, R.J. De Boer, Implications of spatial heterogeneity for the paradox of enrichment. Ecology 76, 2270–2277 (1995)

    Article  Google Scholar 

  104. M. Scheffer, J.M. Baveco, D.L. DeAngelis, K.A. Rose, E.H. Van Nes, Super-individuals a simple solution for modelling large populations on an individual basis. Ecol. Model. 80, 161–170 (1995)

    Article  Google Scholar 

  105. F. Schmitt, L. Seuront, J.-S. Hwang, S. Souissi, L.C. Tseng, Scaling of swimming sequences in copepod behavior: data analysis and simulation. Physica A 364, 287–296 (2006)

    Article  Google Scholar 

  106. F.G. Schmitt, L. Seuront, Multifractal random walk in copepod behavior. Physica A 301, 375–396 (2001)

    Article  MATH  Google Scholar 

  107. T. Sekino, N. Yamamura, Diel vertical migration of zooplankton: optimum migrating schedule based on energy accumulation. Evol. Ecol. 13, 267–282 (1999)

    Article  Google Scholar 

  108. L. Seuront, J.-S. Hwang, L.-C. Tseng, F. Schmitt, S. Souissi, C.-K. Wong, Individual variability in the swimming behavior of the sub-tropical copepod Oncaea venusta (Copepoda: Poecilostomatoida). Mar. Ecol. Prog. Ser. 283, 199–217 (2004)

    Article  Google Scholar 

  109. P.E. Smouse, S. Focardi, P.R. Moorcroft, J.G. Kie, J.D. Forester, J.M. Morales, Stochastic modelling of animal movement. Phil. Trans. R. Soc. B 365, 2201–2211 (2010)

    Article  Google Scholar 

  110. M.E. Solomon, The natural control of animal populations. J. Anim. Ecol. 18, 1–35 (1949)

    Article  Google Scholar 

  111. W.J. Sutherland, Aggregation and the “ideal free” distribution. J. Anim. Ecol. 52, 821–828 (1983)

    Article  Google Scholar 

  112. K.S. Tande, U. Bamstedt, Grazing rates of the copepods Calanus glacialis and C. finmarchicus in arctic waters of the Barents Sea. Mar. Biol. 87, 251–258 (1985)

    Google Scholar 

  113. P. Tiselius, P.R. Jonsson, Foraging behaviour of six calanoid copepods: observations and hydrodynamic analysis. Mar. Ecol. Prog. Ser. 66, 23–33 (1990)

    Article  Google Scholar 

  114. P. Tiselius, P.R. Jonsson, P.G. Verity, A model evaluation of the impact of food patchiness on foraging strategy and predation risk in zooplankton. Bull. Mar. Sci. 53, 247–264 (1993)

    Google Scholar 

  115. J.E. Truscott, J. Brindley, Ocean plankton populations as excitable media. Bull. Math. Biol. 56, 981–998 (1994)

    MATH  Google Scholar 

  116. L.-C. Tseng, R. Kumar, H.-U. Dahms, Q.-C. Chen, J.-S. Hwang, Copepod gut contents, ingestion rates, and feeding impacts in relation to their size structure in the southeastern Taiwan Strait. Zool. Stud. 47, 402–416 (2008)

    Google Scholar 

  117. A. Tsuda, H. Saito, H. Kasai, Annual variation of occurrence and growth in relation with life cycles of Neocalanus flemingeri and N. plumchrus (Calanoida, Copepoda) in the western subarctic Pacific. Mar. Biol. 135, 533–544 (1999)

    Google Scholar 

  118. S. Tuljapurkar, H. Caswell, Structured Population Models in Marine, Terrestrial, and Freshwater Systems (Chapman and Hall, London, 1997), p. 656

    Book  Google Scholar 

  119. A. Visser, Lagrangian modelling of plankton motion: from deceptively simple random walks to Fokker–Planck and back again. J. Mar. Syst. 70, 287–299 (2008)

    Article  Google Scholar 

  120. G.M. Viswanathan, V. Afanasyev, S.V. Buldyrev, S. Havlin, M.G.E. da Luz, E.P. Raposo, H.E. Stanley, Lévy flights search patterns of biological organisms. Physica A 295, 85–88 (2001)

    Article  MATH  Google Scholar 

  121. J. Woods, A. Perilli, W. Barkmann, Stability and predictability of a virtual plankton ecosystem created with an individual-based model. Progr. Oceanogr. 67, 43–83 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

I highly appreciated prof. S. V. Petrovskii (University of Leicester) for a careful reading and comments. Also I thank prof. Elena Arashkevich (Shirshov Institute of Oceanology) who kindly provided the data on Calanus spp. feeding in laboratory (Fig. 5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Yu. Morozov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morozov, A.Y. (2013). Incorporating Complex Foraging of Zooplankton in Models: Role of Micro- and Mesoscale Processes in Macroscale Patterns. In: Lewis, M., Maini, P., Petrovskii, S. (eds) Dispersal, Individual Movement and Spatial Ecology. Lecture Notes in Mathematics(), vol 2071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35497-7_8

Download citation

Publish with us

Policies and ethics