Skip to main content

Beyond Optimal Searching: Recent Developments in the Modelling of Animal Movement Patterns as Lévy Walks

  • Chapter
  • First Online:
Dispersal, Individual Movement and Spatial Ecology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2071))

Abstract

Lévy walks first entered the biological literature when Shlesinger and Klafter (Growth and Form, Martinus Nijhof Publishers, Amsterdam, 1986, pp 279–283) proposed that they can be observed in the movement patterns of foraging ants. The fractal and superdiffusive properties of Lévy walks can be advantageous when searching for randomly and sparsely distributed resources, prompting the suggestion that Lévy walks represent an evolutionary optimal searching strategy. The suggestion is supported by a plethora of empirical studies which have revealed that many organisms (a diverse range of marine predator, honeybees, Escherichia coli) have movement patterns that can approximated by Lévy walks. Nonetheless, Lévy walks with their strange fractal geometry appear alien to biology and their relevance to biology has been hotly debated. Here I describe some of my own recent contributions to Lévy walk research. This research has sought to identify biologically plausible mechanisms by which organisms can execute Lévy walks and to demonstrate that these movement patterns have a utility beyond the understanding and prediction of optimal searching patterns. This work has made apparent that Lévy walks do not stand outside of the now well-established correlated random walk paradigm but are instead natural consequences of it. I also describe some recent advances in Lévy walk search theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Alt, Modelling of motility in biological systems, in ed. by ICIAM’87: Proceedings of the first international conference on industrial and applied mathematics, J. McKenna, R. Temam. (SIAM, Philadelphia, 1988), pp 15–30

    Google Scholar 

  2. W. Alt, Correlation analysis of two-dimensional locomotion paths, in ‘Biological Motion: Proceedings of a workshop held in Königswinter Germany’, ed. by W. Alt, G. Hoffman. Lecture Notes in Biomathematics (Springer, Berlin, 1990), pp 254–268

    Google Scholar 

  3. M. Auger-Méthé, C. Cassady St. Clair, M.A. Lewis, A.E. Derocher, Sampling rate and misidentification of Lévy and non-Lévy movement patterns: comment. Ecology 92, 1699–1701 (2011)

    Google Scholar 

  4. F.C.W. AusterlitzDick, C. Dutech, E.K. Klein, S. Oddou-Muratorio, P.E. Smouse, V.L. Sork, Using genetic markers to estimate the pollen dispersal curve. Mol. Ecol. 13, 937–945 (2004)

    Article  Google Scholar 

  5. M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl. Acad. Sci. 105, 1232–1237 (2008)

    Article  Google Scholar 

  6. A.L. Barabasi, The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211 (2005)

    Article  Google Scholar 

  7. F. Bartumeus, J. Catalan, U.L. Fulco, M.L. Lyra, G.M. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus Brownian strategies. Phys. Rev. Lett. 88, article 097901 (2002)

    Google Scholar 

  8. F. Bartumeus, M.G.E. da Luz, G.M. Viswanathan, J. Catalan, Animal search strategies: a quantitative random search analysis. Ecology 86, 3078–3087 (2005)

    Article  Google Scholar 

  9. F. Bartumeus, Lévy processes in animal movement: an evolutionary hypothesis. Fractals 15, 151–162 (2007)

    Article  Google Scholar 

  10. F. Bartumeus, P. Fernández, M.G.E. da Luz, J. Catalan, R.V. Solé, S.A. Levin, Superdiffusion and encounter rates in diluted, low dimensional worlds. Eur. Phys. J. Spec. Top. 157, 157–166 (2008)

    Article  Google Scholar 

  11. F. Bartumeus, Behavioral intermittence, Lévy patterns, and randomness in animal movement. Oikos 118, 488–494 (2009)

    Google Scholar 

  12. F. Bartumeus, J. Catalan, Optimal search behavior and classic foraging theory. J. Phys. A 42(article), 434002 (2009)

    Google Scholar 

  13. S. Benhamou, How many animals really do the Lévy walk? Ecology 88, 518–528 (2007)

    Article  Google Scholar 

  14. H.C. Berg, Random Walks in Biology (Princeton University Press, Princeton, New Jersey, 1983).

    Google Scholar 

  15. M.S. Blumberg, A.M.H. Seelje, S.B. Lowen, A.E. Karlson, Dynamics of sleep-wake cyclicity in developing rats. Proc. Natl. Acad. Sci. 102, 14680–14864 (2005)

    Article  Google Scholar 

  16. N.W. Bode, D.W. Franks, A.J. Woods, Limited interactions in flocks: relating model simulations to empirical data. R. Soc. Interface (2010). doi:10.1098/rsif.2010.0397

    Google Scholar 

  17. J.S. Brown, Vigilance, patch use and habitat selection: Foraging under predation risk. Evol. Ecol. Res. 1, 49–71 (1999)

    Google Scholar 

  18. M. Buchanan, The mathematical mirror to animal nature. Nature 453, 714–716 (2008)

    Article  Google Scholar 

  19. J. Buhl, D.J.R. Sumpter, I.D. Couzin, J.J. Hale, E. Despland, E.R. Miller, S.J. Simpson, From disorder to order in marching locusts. Science 312, 1402–1406 (2006)

    Article  Google Scholar 

  20. O.V. Bychuk, B. O’Shaughnessy, Anomalous surface diffusion: A numerical study. J. Chem. Phys. 101, 772–780 (1994)

    Article  Google Scholar 

  21. S.A. Cannas, D.E. Marco, M.A. Montemurro, Long range dispersal and spatial pattern formation in biological invasions. Math. Biosci. 203, 155–170 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. I.D. Couzin, J. Krause, R. James, G.D. Ruxton, N.R. Franks, Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  23. I.D. Couzin, J. Krause, N.R. Franks, S.A. Levin, Effective leadership and decision-making in animal groups on the move. Nature 433, 513–516 (2005)

    Article  Google Scholar 

  24. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 2006)

    MATH  Google Scholar 

  25. R. Dawkins, J.R. Krebs, Arms races between and within species. Proc. R. Soc. Lond. B 205, 489–511 (1979)

    Article  Google Scholar 

  26. G.A. Dunn, A.F. Brown, A unified approach to analyzing cell motility. J. Cell Sci. Suppl. 8, 81–102 (1987)

    Google Scholar 

  27. A.M. Edwards, R.A. Phillips, N.W. Watkins, M.P. Freeman, E.J. Murphy, V. Afanasyev, S.V. Buldyrev, M.G.E. da Luz, E.P. Raposo, H.E. Stanley, G.M. Viswanathan, Revisiting Lévy walk search patterns of wandering albatrosses, bumblebees and deer. Nature 449, 1044–1048 (2007)

    Article  Google Scholar 

  28. A.M. Edwards, Overturning conclusions of Lévy flight movement patterns by fishing boats and foraging animals. Ecology 926, 1247–1257 (2011)

    Article  Google Scholar 

  29. A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17, 549–506 (1905)

    Article  MATH  Google Scholar 

  30. A. Einstein, Zur theorie der Brownschen bewegung. Ann. Phys. 19, 549–560 (1906)

    Google Scholar 

  31. M.C. González, C.A. Hidalgo, A.L. Barabási, Understanding individual human mobility patterns. Nature 453, 779–782 (2008)

    Article  Google Scholar 

  32. E. Gurarie, R.D. Andrews, K.L. Laidre, A novel method for identifying behavioural changes in animal movement data. Ecol. Lett. 12, 395–408 (2009)

    Article  Google Scholar 

  33. B. Heinrich, Resource heterogeneity and patterns of movement of foraging bumblebees. Oecologia 40, 235–245 (1979)

    Article  Google Scholar 

  34. B. Heinrich, Do Bumblebees Forage Optimally, and Does It Matter? Am. Zool. 23, 273–281 (1983)

    MathSciNet  Google Scholar 

  35. A. Harnos, G. Horváth, A.B. Lawrence, G. Vattay, Scaling and intermittency in animal behaviour. Phys. A 286, 312–320 (2000)

    Article  MATH  Google Scholar 

  36. B.M. Hill, A simple general approach to inference about the tail of a distribution. Ann. Stat. 3, 1163–1174 (1975)

    Article  MATH  Google Scholar 

  37. N.E. Humphries, N. Queiroz, J.R.M. Dyer, N.G. Pade, M.K. Musyl, K.M. Schaefer, D.W. Fuller, J.M. Brunnschweiler, T.K. Doyle, J.D.R. Houghton, G.C. Hays, C.S. Jones, L.R. Noble, V.J. Wearmouth, E.J. Southall, D.W. Sims, Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465, 1066–1069 (2010)

    Article  Google Scholar 

  38. H. Isliker, I. Vlashos, Random walk through fractal environments. Phys. Rev. E 67(article), 026413 (2003)

    Google Scholar 

  39. A. James, M.J. Planck, R. Brown, Optimizing the encounter rate in biological interactions: Ballistic versus Lévy versus Brownian strategies. Phys. Rev. E 78(article), 051128 (2008)

    Google Scholar 

  40. A. James, M.J. Plank, A.M. Edwards, Assessing Lévy walks as models of animal foraging. J. R. Soc. Interface 8, 1233–1247 (2011)

    Article  Google Scholar 

  41. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957a)

    Article  MathSciNet  MATH  Google Scholar 

  42. E.T. Jaynes, Information theory and statistical mechanics II. Phys. Rev. 108, 171–190 (1957b)

    Article  MathSciNet  Google Scholar 

  43. E.T. Jaynes, in Probability Theory: The Logic of Science, ed. by Bretthorst, G.L. (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  44. R.P. Johnson, Scent marking in mammals. Anim. Behav. 21, 521–535 (1973)

    Article  Google Scholar 

  45. C.J. Johnson, K.L. Parker, D.C. Heard, M.P. Gillingham, Movement parameters of ungulates and scale-specific responses to the environment. J. Anim. Ecol. 71, 225–235 (2002)

    Article  Google Scholar 

  46. D.S. Johnson, J.M. London, M.A. Lea, J.W. Durban, The continuous-time correlated random walk model for animal telemetry data. Ecology 89, 1208–1215 (2008)

    Article  Google Scholar 

  47. J.N. Kapur, Maximum-Entropy Models in Science and Engineering (Wiley, New York, 1989)

    MATH  Google Scholar 

  48. P.M. Kareiva, Population dynamics in spatially complex environments: theory and data. Phil. Trans. R. Soc. Lond. B 330, 175–190 (1990)

    Article  Google Scholar 

  49. E. Korobkova, T. Emonet, J.M.G. Vilar, T.S. Shimizu, P. Cluzel, From molecular noise to behavioural variability in a single bacterium. Nature 428, 574–578 (2004)

    Article  Google Scholar 

  50. P. Knoppien, J. Reddingius, Predators with two modes of searching: a mathematical model. J. Theor. Biol. 114, 273–301 (1985)

    Article  MathSciNet  Google Scholar 

  51. D.L. Kramer, R.L. McLaughlin, The behavioural ecology of intermittent locomotion. Am. Zool. 41, 137–153 (2001)

    Article  Google Scholar 

  52. S.A. Levin, The problem of pattern and scale in Ecology. Ecology 73, 1943–1967 (1992)

    Article  Google Scholar 

  53. C. Lett, H. Østergård, A stochastic model simulating the spatiotemporal dynamics of yellow rust on wheat. Acta Phytopathologica et Entomologica Hungarica 35, 287–293 (2000)

    Google Scholar 

  54. P. Lévy, Théorie de l’addition des Variables Aaléatoires(Monographies des Probabilités, publiés sous la direction de E. Borel, no. 1.) (Guathier Villars, Paris, 1937)

    Google Scholar 

  55. S.L. Lima, P.A. Zollner, Towards a behavioral ecology of ecological landscapes. Trends Ecol. Evol. 11, 131–135 (1996)

    Article  Google Scholar 

  56. C.C. Lo, L.A. Nunes Amaral, S. Havlin, P.C.h. Ivanov, T. Penzel, J.H. Peterand, H.E. Stanley, Dynamics of sleep-wake transitions during sleep. Europhys. Lett. 57, 625–631 (2002)

    Google Scholar 

  57. C.C. Lo, T. Chou, T. Penzel, T.E. Scammell, R.E. Strecker, H.E. Stanley, P.C.h. Ivanov, Common scale-invariant pattern of sleep-wake transitions across mammalian species. Proc. Natl. Acad. Sci. 101, 17545–17548 (2004)

    Google Scholar 

  58. M.A. Lomholt, K. Tal, R. Metzler, J. Klafter, Lévy strategies in intermittent search processes are advantageous. Proc. Natl. Acad. Sci. 105, 11055–11059 (2008)

    Article  Google Scholar 

  59. I. Lubashevsky, R. Friedrich, A. Heuer, Realization of Levy flights as continuous processes. Phys. Rev. E 79(article), 011110 (2009)

    Google Scholar 

  60. J.R. Martin, A portrait of locomotor behaviour in Drosophila determined by a video-tracking paradigm. Behav. Process. 67, 207–219 (2004)

    Article  Google Scholar 

  61. J.M. Morales, S.P. Ellner, Scaling up animal movements in heterogeneous landscapes: the importance of behaviour. Ecology 83, 2240–2247 (2002)

    Article  Google Scholar 

  62. J.M. Morales, D.T. Haydon, J. Frair, K.E. Holsinger, J.M. Fryxell, Extracting more out of relocation data: Building movement models as mixtures of random walks. Ecology 85, 2436–2445 (2004)

    Article  Google Scholar 

  63. W.J. O’Brien, H.I. Browman, B.I. Evans, Search strategies of foraging animals. Am. Sci. 78, 152–160 (1990)

    Google Scholar 

  64. A. Okubo, H.C. Chiang, An analysis of the kinematics of swarming behaviour of Anarete pritchardi Kim (Diptera: Cecidomyiidae). Res. Popul. Ecol. 16, 1–42 (1974)

    Article  Google Scholar 

  65. A. Okubo, Diffusion and Ecological Problems: Mathematical Models (Springer, Berlin, 1980)

    MATH  Google Scholar 

  66. O. Ovaskainen, Habitat specific movement parameters estimated using mark-recapture data and diffusion model. Ecology 85, 242–257 (2004)

    Article  Google Scholar 

  67. O. Ovaskainen, H. Rekola, E. Meyke, E. Arjas, Bayesian methods for analyzing movements in heterogeneous landscapes form mark-recapture data. Ecology 89, 542–554 (2008)

    Article  Google Scholar 

  68. M.J. Plank, A. James, Optimal foraging: Lévy pattern or process? R. Soc. Interface 5, 1077–1086 (2008)

    Article  Google Scholar 

  69. S.G. Reebs, Can a minority of informed leaders determine the foraging movements of a fish shoal? Anim. Behav. 59, 403–409 (2000)

    Article  Google Scholar 

  70. A.M. Reynolds, On the intermittent behaviour of foraging animals. Europhys. Lett. 75, 517–520 (2006)

    Article  MathSciNet  Google Scholar 

  71. A.M. Reynolds, Deterministic walks with inverse-square power-law scaling are an emergent property of predators that use chemotaxis to located randomly distributed prey. Phys. Rev. E 78(article), 011906 (2008a)

    Google Scholar 

  72. A.M. Reynolds, How many animals really do the Lévy walk? Comment. Ecology 89, 2347–2351 (2008b)

    Article  Google Scholar 

  73. A.M. Reynolds, Lévy flight patterns are predicted to be an emergent property of a bumblebee’s foraging strategy. Behav. Ecol. Sociobiol. 64, 19–23 (2009a)

    Article  Google Scholar 

  74. A.M. Reynolds, Adaptive Lévy walks can outperform composite Brownian walks in non-destructive random searching scenarios. Phys. A 388, 561–564 (2009b)

    Article  Google Scholar 

  75. A.M. Reynolds, Bridging the gulf between correlated random walks and Lévy walks: Autocorrelation as a source of Lévy walk movement patterns. R. Soc. Interface 7, 1753–1758 (2010a)

    Article  Google Scholar 

  76. A.M. Reynolds, Can spontaneous cell movements be modelled as Lévy walks? Phys. A 389, 273–277 (2010b)

    Article  Google Scholar 

  77. A.M. Reynolds, Animals that randomly reorient at cues left by correlated random walkers do the Lévy walk. Am. Nat. 175, 607–613 (2010c)

    Article  Google Scholar 

  78. A.M. Reynolds, Balancing the competing demands of harvesting and safety from predation: Lévy walk searches outperform composite Brownian walk searches but only when foraging under the risk of predation. Phys. A 389, 4740–4746 (2010d)

    Article  Google Scholar 

  79. A.M. Reynolds, Exponential and power-law contact distributions for windborne spores are representative of different atmospheric conditions. Phytopathology 101, 1465–1470 (2011a)

    Article  Google Scholar 

  80. A.M. Reynolds, Chemotaxis can provide biological organisms with good solutions to the travelling salesman problem. Phys. Rev. E 83, 052901 (2011b)

    Article  Google Scholar 

  81. A.M. Reynolds, On the origin of bursts and heavy tails in animal dynamics. Phys. A 390, 245–249 (2011c)

    Article  Google Scholar 

  82. A.M. Reynolds, Truncated Lévy walks are an expected outcome of correlated random walks models: Translating observations taken at small spatiotemporal scales into expected patterns at greater scales. J. R. Soc. Interface 9, 528–534 (2012d)

    Article  Google Scholar 

  83. A.M. Reynolds, A.D. Smith, R. Menzel, U. Greggers, D.R. Reynolds, J.R. Riley, Displaced honeybees perform optimal scale-free search flights. Ecology 88, 1955–1961 (2007a)

    Article  Google Scholar 

  84. A.M. Reynolds, A.D. Smith, D.R. Reynolds, N.L. Carreck, J.L. Osborne, Honeybees perform optimal scale-free searching flights when attempting to locate a food source. J. Exp. Biol. 210, 3763–3770 (2007b)

    Article  Google Scholar 

  85. A.M. Reynolds, C.J. Rhodes, The Lévy flight paradigm: random search patterns and mechanisms. Ecology 90, 877–887 (2009)

    Article  Google Scholar 

  86. A.M. Reynolds, F. Bartumeus, Optimising the success of random destructive searching: Lévy walks can outperform ballistic motions. J. Theor. Biol. 260, 98–103 (2009)

    Article  MathSciNet  Google Scholar 

  87. A.M. Reynolds, J.L. Swain, A.D. Smith, A.P. Martin, J.L. Osborne, Honeybees use a Lévy flight search strategy and odour-mediated anemotaxis to relocate food sources. Behav. Sociobiol. 64, 115–123 (2009)

    Article  Google Scholar 

  88. M.C. Santos, E.P. Raposo, G.M. Viswanathan, M.G.E. da Luz, Can collective searches profit from Lévy walk strategies? J. Phys. A 42(article), 4340174 (2009)

    Google Scholar 

  89. F.L. Schuster, M. Levandowsky, Chemosensory responses of Acanthamoeba castellani: Visual analysis of random movement and responses to chemical signals. J. Eukaryot. Microbiol. 43, 150–158 (1996)

    Article  Google Scholar 

  90. T.D. Seeley, Honeybee Ecology: A Study of Adaptation in Social Life (Princeton University Press, Princeton, 1985)

    Google Scholar 

  91. D. Selmeczi, S. Mosler, P.H. Hagedorn, N.B. Larsen, H. Flyvbjerg, Cell motility as persistent random motion: theories from experiments. Biophys. J 89, 912–931 (2005)

    Article  Google Scholar 

  92. M.W. Shaw, Simulation of population expansion and spatial pattern when individual dispersal distributions do not decline exponentially with distance. Proc. R. Soc. B 259, 243–248 (1995)

    Article  Google Scholar 

  93. M.W. Shaw, T.D. Harwood, M.J. Wilkinson, L. Elliott, Assembling spatially explicit landscape models of pollen and spore dispersal by wind for risk assessment. Proc. R. Soc. B 273, 1705–1713 (2006)

    Article  Google Scholar 

  94. M.F. Shlesinger, J. Klafter, Lévy walks versus Lévy flights. In Growth and Form, ed. by H.E. Stanley, N. Ostrowski (Martinus Nijhof Publishers, Amsterdam, 1986), pp 279–283

    Google Scholar 

  95. Shlesinger, M.F., Zaslavsky, G., Frisch, U. (eds). Lévy Flights and Related Topics in Physics (Springer, Berlin, 1995)

    Google Scholar 

  96. D.W. Sims, E.J. Southall, N.E. Humphries, G.C. Hays, C.J.A. Bradshaw, J.W. Pitchford, A. James, M.Z. Ahmed, A.S. Brierley, M.A. Hindell, D. Moritt, M.K. Musyl, D. Righton, E.L.C. Shepard, V.J. Wearmouth, R.P. Wilson, M.J. Witt, J.D. Metcalfe, Scaling laws of marine predator search behaviour. Nature 451, 1098–1102 (2008)

    Article  Google Scholar 

  97. J.M. Smith, G.R. Price, The logic of animal conflict. Nature 246, 15–18 (1973)

    Article  Google Scholar 

  98. C. Song, T. Koren, P. Wang, A.L. Barabási, Modelling the scaling properties of human mobility. Nat. Phys. 6, 818-823 (2010)

    Article  Google Scholar 

  99. E. Sparre Andersen, On the fluctuations of sums of random variables. Math. Scand. 1, 263–285 (1953)

    MathSciNet  MATH  Google Scholar 

  100. E. Sparre Andersen, On the fluctuations of sums of random variables II. Math. Scand. 2, 195–223 (1954)

    MathSciNet  MATH  Google Scholar 

  101. J. Travis, Ecology: do wandering albatrosses care about math? Science 318, 742–743 (2007)

    Article  Google Scholar 

  102. Y. Tu, G. Grinstein, How white noise generates power-law switching in bacterial flagellar motors. Phys. Rev. Lett. 94, 208101. (2005)

    Google Scholar 

  103. P. Turchin, Fractal analyses of animal movements: a critique. Ecology 77, 2086–2090 (1996)

    Article  Google Scholar 

  104. P. Turchin, Quantitative Analysis of Movement: Measuring and Modelling Population Redistribution in Animals and Plants (Sinauer Associates, Sunderland, Massachusetts, 1998)

    Google Scholar 

  105. L. Van Valen, A new evolutionary law. Evol. Theor 1, 1–30 (1973)

    Google Scholar 

  106. G.I. Vermeij, Evolution and Escalation: An Ecological History of Life (Princeton University Press, Princeton, 1987)

    Google Scholar 

  107. G.M. Viswanathan, V. Afanasyev, S.V. Buldyrev, E.J. Murphy, P.A. Prince, H.E. Stanley, Lévy flight search patterns of wandering albatrosses. Nature 381, 413–415 (1996)

    Article  Google Scholar 

  108. G.M. Viswanathan, S.V. Buldyrev, S. Havlin, M.G.E. da Luz, E.P. Raposo, H.E. Stanley, Optimizing the success of random searches. Nature 401, 911–914 (1999)

    Article  Google Scholar 

  109. A.W. Visser, T. Kiørboe, Plankton motility patterns and encounter rates. Oecologia 148, 538–546 (2006)

    Article  Google Scholar 

  110. E.P. White, B.J. Enquist, J.L. Green, On estimating the exponent of power-law frequency distributions. Ecology 89, 905–912 (2008)

    Article  Google Scholar 

  111. H. Wiemerskirsch, D. Pinaud, F. Pawloswski, C.A. Bost, Does prey capture induce area-restricted search? A fine-scale study using GPS in a marine predator, the wandering albatross. Am. Nat. 170, 734–743 (2007)

    Article  Google Scholar 

  112. L.U. Wingen, J.K.M. Brown, M.W. Shaw, The population genetic structure of clonal organisms generated by exponentially bounded and fat-tailed dispersal. Genetics 177, 435–448 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Rothamsted Research receives grant aided support from the Biotechnology and Biological Sciences Research Council. I am indebted to Don Reynolds and Chris Rhodes for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Reynolds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reynolds, A. (2013). Beyond Optimal Searching: Recent Developments in the Modelling of Animal Movement Patterns as Lévy Walks. In: Lewis, M., Maini, P., Petrovskii, S. (eds) Dispersal, Individual Movement and Spatial Ecology. Lecture Notes in Mathematics(), vol 2071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35497-7_3

Download citation

Publish with us

Policies and ethics