Skip to main content

Stochastic Optimal Foraging Theory

  • Chapter
  • First Online:
Dispersal, Individual Movement and Spatial Ecology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2071))

Abstract

We present here the core elements of a stochastic optimal foraging theory (SOFT), essentially, a random search theory for ecologists. SOFT complements classic optimal foraging theory (OFT) in that it assumes fully uninformed searchers in an explicit space. Mathematically, the theory quantifies the time spent by a random walker (the forager) on a spatial region delimited by absorbing boundaries (the targets). The walker starts from a given initial position and has no previous knowledge (nor the possibility to gain knowledge) on target/patch locations. Averages on such process can describe the dynamics of an uninformed forager looking for successive targets in a diverse and dynamical spatial environment. The framework provides a means to advance in the study of search uncertainty and animal information use in natural foraging systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.J. Anderson, Optimal foraging and the traveling salesman. Theor. Popul. Biol. 24, 145–159 (1983)

    Article  Google Scholar 

  2. F. Bartumeus, M.G.E. da Luz, G.M. Viswanathan, J. Catalan, Animal search strategies: a quantitative random-walk analysis. Ecology 86, 3078–3087 (2005)

    Article  Google Scholar 

  3. F. Bartumeus, Lévy processes in animal movement: an evolutionary hypothesis. Fractals 15, 151–162 (2007)

    Article  Google Scholar 

  4. F. Bartumeus, J. Catalan, Optimal search behavior and classic foraging theory. J. Phys. A: Math. Theor. 42, 434002 (2009)

    Article  Google Scholar 

  5. F. Bartumeus, S.A. Levin, Fractal intermittence in locomotion: linking animal behavior to statistical patterns of search. Proc. Natl. Acad. Sci. USA 105, 19072–19077 (2008)

    Article  Google Scholar 

  6. F. Bartumeus, P. Fernández, M.G.E. da Luz, J. Catalan, R.V. Solé, S.A. Levin, Superdiffusion and encounter rates in diluted, low dimensional worlds. Eur. Phys. J. Spec. Top. 157, 157–166 (2008)

    Article  Google Scholar 

  7. F. Bartumeus, J. Catalan, G.M. Viswanathan, E.P. Raposo, M.G.E. da Luz, The influence of turning angles on the success of non-oriented animal searches. J. Theor. Biol. 252, 43–55 (2008)

    Article  Google Scholar 

  8. W.J. Bell, Searching Behaviour: The Behavioural Ecology of Finding Resources (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  9. O. Bénichou, C. Loverdo, M. Moreau, R. Voituriez, Two-dimensional intermittent search processes: an alternative to Lévy flight strategies. Phys. Rev. E 75, 020102(R) (2006)

    Google Scholar 

  10. S.V. Buldyrev, S. Havlin, A.Ya. Kazakov, M.G.E. da Luz, E.P. Raposo, H.E. Stanley, G.M. Viswanathan, Average time spent by Lévy flights and walks on an interval with absorbing boundaries. Phys. Rev. E 64, 041108 (2001)

    Google Scholar 

  11. S.V. Buldyrev, M. Gitterman, S. Havlin, A.Ya. Kazakov, M.G.E. da Luz, E.P. Raposo, H.E. Stanley, G.M. Viswanathan, Properties of Lévy fights on an interval with absorbing boundaries. Physica A 302, 148–161 (2001)

    Google Scholar 

  12. G.C. Collier, C.K. Rovee-Collier, A comparative analysis of optimal foraging behavior: laboratory simulations, in Foraging Behavior: Ecological, Ethological, and Psychological Approaches, ed. by A.C. Kamil, T.D. Sargent. Garland Series in Ethology (Garland STPM Press, New York, 1981)

    Google Scholar 

  13. I.C. Cuthill, P. Haccou, A. Kacelnick, J.R. Krebs, Y. Iwasa, Starlings exploiting patches: the effect of recent experience on foraging decisions. Anim. Behav. 40, 625–640 (1990)

    Article  Google Scholar 

  14. I.C. Cuthill, P. Haccou, A. Kacelnick, Starlings Sturnus vulgaris exploiting patches: response to long-term changes in travel time. Behav. Ecol. 5, 81–90 (1994)

    Article  Google Scholar 

  15. M.G.E. da Luz, S. Buldyrev, S. Havlin, E. Raposo, H. Stanley, G.M. Viswanathan, Improvements in the statistical approach to random Lévy flight searches. Physica A 295, 89–92 (2001)

    Article  MATH  Google Scholar 

  16. M.G.E. da Luz, A. Grosberg, E.P. Raposo, G.M. Viswanathan (eds.), The random search problem: trends and perspectives. J. Phys. A 42(43), 430301 (2009)

    Google Scholar 

  17. A.S. Ferreira, E.P. Raposo, G.M. Viswanathan, M.G.E. da Luz, The influence of the Lévy random search efficiency: fractality and memory effects. Physica A 391, 3234–3246 (2012)

    Article  Google Scholar 

  18. T. Geisel, J. Nierwetberg, A. Zacherl, Accelerated diffusion in Josephson junctions and related chaotic systems. Phys. Rev. Lett. 54, 616–619 (1985)

    Article  Google Scholar 

  19. L.-A. Giraldeau, Solitary foraging strategies, in Behavioural Ecology, ed. by E. Danchin, L.-A. Giraldeau, F. Cézilly (Oxford University Press, Oxford, 2008)

    Google Scholar 

  20. R.F. Green, Bayesian birds: a simple example of Oaten’s stochastic model of optimal foraging. Theor. Popul. Biol. 18, 244–256 (1980)

    Article  MATH  Google Scholar 

  21. Y. Iwasa, M. Higashi, N. Iamamura, Prey distribution as a factor determining the choice of optimal foraging strategy. Am. Nat. 117, 710–723 (1981)

    Article  Google Scholar 

  22. A. James, M.J. Planck, R. Brown, Optimizing the encounter rate in biological interactions: ballistic versus Lévy versus Brownian strategies. Phys. Rev. E 78, 051128 (2008)

    Article  Google Scholar 

  23. A. James, M.J. Planck, A.M. Edwards, Assessing Lévy walks as models of animal foraging. J. R. Soc. Interface 8(62), 1233–1247 (2011). doi:10.1098/rsif.2011.0200

    Article  Google Scholar 

  24. A. Kacelnick, I.A. Todd, Psychological mechanisms and the marginal value theorem: effect of variability in travel time on patch exploitation. Anim. behav. 43, 313–322 (1992)

    Article  Google Scholar 

  25. A.C. Kamil, T.D. Sargent (eds.), in Foraging Behavior: Ecological, Ethological, and Psychological Approaches. Garland Series in Ethology (Garland STPM Press, New York, 1981)

    Google Scholar 

  26. A.C. Kamil, J.R. Krebs, H.R. Pulliam (eds.), Foraging Behavior (Plenum Press, New York, 1987)

    Google Scholar 

  27. T. Koren, M.A. Lomholt, A.V. Chechkin, J. Klafter, R. Metzler, Leapover lengths and first passage time statistics for Lévy flights. Phys. Rev. Lett. 99, 160602 (2007)

    Article  Google Scholar 

  28. J.R. Krebs, N.B. Davies, An Introduction to Behavioural Ecology, 3rd edn. (Blackwell, Oxford, 1993)

    Google Scholar 

  29. M.A. Lomholt, T. Koren, R. Metzler, J. Klafter, Lévy strategies in intermittent search processes are advantageous. Proc. Natl. Acad. Sci. USA 105, 1055–1059 (2008)

    Article  Google Scholar 

  30. R.N. Mantegna, H.E. Stanley, Phys. Rev. Lett. 73, 2946–2949 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. J.M. McNamara, Optimal patch use in a stochastic environment. Theor. Popul. Biol. 21, 269–288 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. J.M. McNamara, Memory and the efficient use of information. J. Theor. Biol. 125, 385–395 (1987)

    Article  MathSciNet  Google Scholar 

  33. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Oaten, Optimal foraging in patches: a case for stochasticity. Theor. Popul. Biol. 12, 263–285 (1977)

    Article  MathSciNet  Google Scholar 

  35. A. Okubo, S.A. Levin, Diffusion and Ecological Problems: Modern Perspectives (Springer, Berlin/Plenum Press, New York, 2001)

    Google Scholar 

  36. M.J. Plank, A. James, Optimal foraging: Lévy pattern or process? J. R. Soc. Interface 5, 1077–1086 (2008)

    Article  Google Scholar 

  37. E.P. Raposo, F. Bartumeus, M.G.E. da Luz, P.J. Ribeiro-Neto, T.A. Souza, G.M. Viswanathan, How landscape heterogeneity frames optimal diffusivity in searching processes. PLOS Comput. Biol. 7(11), e10002233 (2011)

    Google Scholar 

  38. S. Redner, A Guide to First-Passage Processes (Cambridge Univeristy Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  39. F. Reif, Fundamentals of Statistical and Thermal Physics (Chap. 1) (McGraw-Hill, Singapore, 1985)

    Google Scholar 

  40. A.M. Reynolds, F. Bartumeus, Optimising the success of random destructive searches: Lévy walks can outperform ballistic motions. J. Theor. Biol. 260, 98–103 (2009)

    Article  MathSciNet  Google Scholar 

  41. A.M. Reynolds, A.D. Smith, R. Menzel, U. Greggers, D.R. Reynolds, J.R. Riley, Displaced honey bees perform optimal scale-free search flights. Ecology 88, 1955–1961 (2007)

    Article  Google Scholar 

  42. M.F. Shlesinger, J. Klafter, Comment on accelerated diffusion in Josephson junctions and related chaotic systems. Phys. Rev. Lett. 54, 2551 (1985)

    Article  Google Scholar 

  43. M.F. Shlesinger, J. Klafter, Lévy walks versus Lévy flights, in On Growth and Form, ed. by H.E. Stanley, N. Ostrowsky (Nijhoff, Dordrecht, 1986)

    Google Scholar 

  44. M.F. Shlesinger, G. Zaslavsky, U. Frisch (eds.), Lévy Flights and Related Topics in Physics (Springer, Berlin, 1995)

    MATH  Google Scholar 

  45. T.W. Shoener, Theory of feeding strategies. Ann. Rev. Ecol. Syst. 2, 369–404 (1971)

    Article  Google Scholar 

  46. T.W. Shoener, A brief history of optimal foraging ecology, in Foraging Behavior, ed. by A.C. Kamil, J.R. Krebs, H.R. Pulliam (Plenum Press, New York, 1987)

    Google Scholar 

  47. D.W. Stephens, J.R. Krebs, Foraging Theory (Princeton University Press, Princeton, 1986)

    Google Scholar 

  48. D.W. Stephens, J.S. Brown, R.C. Ydenberg, Foraging: Behavior and Ecology (The University Chicago Press, Chicago, 2007)

    Book  Google Scholar 

  49. G.M. Viswanathan, S. Buldyrev, S. Havlin, M.G.E. da Luz, E. Raposo, H. Stanley, Optimizing the success of random searches. Nature 401, 911–914 (1999)

    Article  Google Scholar 

  50. G.M. Viswanathan, E.P. Raposo, F. Bartumeus, J. Catalan, M.G.E. da Luz, Necessary criterion for distinguishing true superdiffusion from correlated random walk processes. Phys. Rev. E 72, 011111(6) (2005)

    Article  Google Scholar 

  51. G.M. Viswanathan, M.G.E. da Luz, E.P. Raposo, H.E. Stanley, The Physics of Foraging: An Introduction to Random Searches and Biological Encounters (Cambridge University Press, Cambridge, 2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank CNPq, CAPES, FACEPE (Brazilian agencies), the Spanish Ministry of Science and Innovation (RyC-2009-04133 and BFU2010-22337) for financial support. FB specially thanks A. Oltra for helping in the edition of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Bartumeus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bartumeus, F., Raposo, E.P., Viswanathan, G.M., da Luz, M.G.E. (2013). Stochastic Optimal Foraging Theory. In: Lewis, M., Maini, P., Petrovskii, S. (eds) Dispersal, Individual Movement and Spatial Ecology. Lecture Notes in Mathematics(), vol 2071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35497-7_1

Download citation

Publish with us

Policies and ethics