Skip to main content

β-Amyloid Fibril Structures, In Vitro and In Vivo

  • Chapter
  • First Online:
Proteopathic Seeds and Neurodegenerative Diseases

Part of the book series: Research and Perspectives in Alzheimer's Disease ((ALZHEIMER))

Abstract

Since 1998, a great deal of progress has been made towards determining and understanding the molecular structures of amyloid fibrils, including fibrils formed by the β-amyloid peptide that is associated with Alzheimer’s disease. Much of this progress has resulted from solid state nuclear magnetic resonance (NMR) measurements, which provide experimental constraints on molecular conformations and interatomic distances without requiring solubility or crystallinity. In general, amyloid fibrils are polymorphic, meaning that fibrils formed by a given peptide or protein can have multiple, distinct molecular structures, depending on the precise conditions under which the fibrils grow. From solid state NMR, electron microscopy, and other measurements, we have developed two detailed molecular structural models for fibrils formed by the 40-residue wild-type β-amyloid (Aβ1–40) peptide. These two Aβ1–40 fibril polymorphs share a common, parallel β-sheet organization and contain similar peptide conformations but differ in overall symmetry and in other structural aspects. We have also identified and characterized a surprising antiparallel β-sheet structure in metastable fibrils formed by a disease-associated mutant, D23N-Aβ1–40, which reveals how similar sets of interactions can stabilize both parallel and antiparallel β-sheets within amyloid fibrils. We are currently extending our structural studies to β-amyloid fibrils that develop in human brain tissue, with the goal of testing whether variations in fibril structure correlate with variations in severity, progression rate, or other characteristics of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE, Smith SO (2010) Structural conversion of neurotoxic amyloid-β1-42 oligomers to fibrils. Nat Struct Mol Biol 17:561–567

    Article  PubMed  CAS  Google Scholar 

  • Aizenstein HJ, Nebes RD, Saxton JA, Price JC, Mathis CA, Tsopelas ND, Ziolko SK, James JA, Snitz BE, Houck PR, Bi WZ, Cohen AD, Lopresti BJ, DeKosky ST, Halligan EM, Klunk WE (2008) Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 65:1509–1517

    Article  PubMed  Google Scholar 

  • Antzutkin ON, Balbach JJ, Leapman RD, Rizzo NW, Reed J, Tycko R (2000) Multiple quantum solid state NMR indicates a parallel, not antiparallel, organization of b-sheets in Alzheimer’s β-amyloid fibrils. Proc Natl Acad Sci USA 97:13045–13050

    Article  PubMed  CAS  Google Scholar 

  • Antzutkin ON, Leapman RD, Balbach JJ, Tycko R (2002) Supramolecular structural constraints on Alzheimer’s β-amyloid fibrils from electron microscopy and solid state nuclear magnetic resonance. Biochemistry 41:15436–15450

    Article  PubMed  CAS  Google Scholar 

  • Balbach JJ, Ishii Y, Antzutkin ON, Leapman RD, Rizzo NW, Dyda F, Reed J, Tycko R (2000) Amyloid fibril formation by Ab16-22, a seven-residue fragment of the Alzheimer’s β-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39:13748–13759

    Article  PubMed  CAS  Google Scholar 

  • Balbach JJ, Petkova AT, Oyler NA, Antzutkin ON, Gordon DJ, Meredith SC, Tycko R (2002) Supramolecular structure in full-length Alzheimer’s b-amyloid fibrils: evidence for a parallel β-sheet organization from solid state nuclear magnetic resonance. Biophys J 83:1205–1216

    Article  PubMed  CAS  Google Scholar 

  • Baxa U, Wickner RB, Steven AC, Anderson DE, Marekov LN, Yau WM, Tycko R (2007) Characterization of β-sheet structure in Ure2p1-89 yeast prion fibrils by solid state nuclear magnetic resonance. Biochemistry 46:13149–13162

    Article  PubMed  CAS  Google Scholar 

  • Benzinger TLS, Gregory DM, Burkoth TS, Miller-Auer H, Lynn DG, Botto RE, Meredith SC (1998) Propagating structure of Alzheimer’s β-amyloid10-35 is parallel β-sheet with residues in exact register. Proc Natl Acad Sci USA 95:13407–13412

    Article  PubMed  CAS  Google Scholar 

  • Bertini I, Gonnelli L, Luchinat C, Mao JF, Nesi A (2011) A new structural model of Aβ40 fibrils. J Am Chem Soc 133:16013–16022

    Article  PubMed  CAS  Google Scholar 

  • Bessen RA, Marsh RF (1992) Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J Virol 66:2096–2101

    PubMed  CAS  Google Scholar 

  • Bu ZM, Shi Y, Callaway DJE, Tycko R (2007) Molecular alignment within b-sheets in Aβ14-23 fibrils: solid state NMR experiments and theoretical predictions. Biophys J 92:594–602

    Article  PubMed  CAS  Google Scholar 

  • Chan JCC, Oyler NA, Yau WM, Tycko R (2005) Parallel β-sheets and polar zippers in amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p. Biochemistry 44:10669–10680

    Article  PubMed  CAS  Google Scholar 

  • Chaney MO, Webster SD, Kuo YM, Roher AE (1998) Molecular modeling of the Aβ1-42 peptide from Alzheimer’s disease. Protein Eng 11:761–767

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Thurber KR, Shewmaker F, Wickner RB, Tycko R (2009) Measurement of amyloid fibril mass-per-length by tilted-beam transmission electron microscopy. Proc Natl Acad Sci USA 106:14339–14344

    Google Scholar 

  • Cheng HM, Tsai TWT, Huang WYC, Lee HK, Lian HY, Chou FC, Mou Y, Chan JCC (2011) Steric zipper formed by hydrophobic peptide fragment of Syrian hamster prion protein. Biochemistry 50:6815–6823

    Article  PubMed  CAS  Google Scholar 

  • Chimon S, Shaibat MA, Jones CR, Calero DC, Aizezi B, Ishii Y (2007) Evidence of fibril-like b-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s β-amyloid. Nat Struct Mol Biol 14:1157–1164

    Article  PubMed  CAS  Google Scholar 

  • Cobb NJ, Sonnichsen FD, McHaourab H, Surewicz WK (2007) Molecular architecture of human prion protein amyloid: a parallel, in-register β-structure. Proc Natl Acad Sci USA 104:18946–18951

    Article  PubMed  CAS  Google Scholar 

  • Comellas G, Lemkau LR, Nieuwkoop AJ, Kloepper KD, Ladror DT, Ebisu R, Woods WS, Lipton AS, George JM, Rienstra CM (2011) Structured regions of α-synuclein fibrils include the early-onset Parkinson’s disease mutation sites. J Mol Biol 411:881–895

    Article  PubMed  CAS  Google Scholar 

  • Coustou V, Deleu C, Saupe S, Begueret J (1997) The protein product of the HET-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 94:9773–9778

    Article  PubMed  CAS  Google Scholar 

  • Cummings BJ, Pike CJ, Shankle R, Cotman CW (1996) β-Amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiol Aging 17:921–933

    Article  PubMed  CAS  Google Scholar 

  • Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG (2010) Intermolecular alignment in b2-microglobulin amyloid fibrils. J Am Chem Soc 132:17077–17079

    Article  PubMed  CAS  Google Scholar 

  • Der-Sarkissian A, Jao CC, Chen J, Langen R (2003) Structural organization of α-synuclein fibrils studied by site-directed spin labeling. J Biol Chem 278:37530–37535

    Article  PubMed  CAS  Google Scholar 

  • Fawzi NL, Okabe Y, Yap EH, Head-Gordon T (2007) Determining the critical nucleus and mechanism of fibril elongation of the Alzheimer’s Aβ1-40 peptide. J Mol Biol 365:535–550

    Article  PubMed  CAS  Google Scholar 

  • George AR, Howlett DR (1999) Computationally derived structural models of the β-amyloid found in Alzheimer’s disease plaques and the interaction with possible aggregation inhibitors. Biopolymers 50:733–741

    Article  PubMed  CAS  Google Scholar 

  • Goldsbury C, Wirtz S, Muller SA, Sunderji S, Wicki P, Aebi U, Frey P (2000) Studies on the in vitro assembly of Ab1-40: implications for the search for Aβ fibril formation inhibitors. J Struct Biol 130:217–231

    Article  PubMed  CAS  Google Scholar 

  • Goldsbury C, Frey P, Olivieri V, Aebi U, Muller SA (2005) Multiple assembly pathways underlie amyloid-β fibril polymorphisms. J Mol Biol 352:282–298

    Article  PubMed  CAS  Google Scholar 

  • Gordon DJ, Sciarretta KL, Meredith SC (2001) Inhibition of β-amyloid(40) fibrillogenesis and disassembly of β-amyloid(40) fibrils by short β-amyloid congeners containing N-methyl amino acids at alternate residues. Biochemistry 40:8237–8245

    Article  PubMed  CAS  Google Scholar 

  • Grabowski TJ, Cho HS, Vonsattel JPG, Rebeck GW, Greenberg SM (2001) Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol 49:697–705

    Article  PubMed  CAS  Google Scholar 

  • Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length α-synuclein fibrils studied by solid state NMR. Proc Natl Acad Sci USA 102:15871–15876

    Article  PubMed  CAS  Google Scholar 

  • Helmus JJ, Surewicz K, Nadaud PS, Surewicz WK, Jaroniec CP (2008) Molecular conformation and dynamics of the Y145Stop variant of human prion protein. Proc Natl Acad Sci USA 105:6284–6289

    Article  PubMed  CAS  Google Scholar 

  • Jaroniec CP, MacPhee CE, Bajaj VS, McMahon MT, Dobson CM, Griffin RG (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci USA 101:711–716

    Article  PubMed  CAS  Google Scholar 

  • Kammerer RA, Kostrewa D, Zurdo J, Detken A, Garcia-Echeverria C, Green JD, Muller SA, Meier BH, Winkler FK, Dobson CM, Steinmetz MO (2004) Exploring amyloid formation by a de novo design. Proc Natl Acad Sci USA 101:4435–4440

    Article  PubMed  CAS  Google Scholar 

  • Kheterpal I, Chen M, Cook KD, Wetzel R (2006) Structural differences in Aβ amyloid protofibrils and fibrils mapped by hydrogen exchange/mass spectrometry with on-line proteolytic fragmentation. J Mol Biol 361:785–795

    Article  PubMed  CAS  Google Scholar 

  • Klimov DK, Thirumalai D (2003) Dissecting the assembly of Aβ16-22 amyloid peptides into antiparallel β sheets. Structure 11:295–307

    Article  PubMed  CAS  Google Scholar 

  • Klunk WE, Engler H, Nordberg A, Wang YM, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound B. Ann Neurol 55:306–319

    Article  PubMed  CAS  Google Scholar 

  • Kodali R, Williams AD, Chemuru S, Wetzel R (2010) Aβ1-40 forms five distinct amyloid structures whose β-sheet contents and fibril stabilities are correlated. J Mol Biol 401:503–517

    Article  PubMed  CAS  Google Scholar 

  • Kryndushkin DS, Wickner RB, Tycko R (2011) The core of Ure2p prion fibrils is formed by the N-terminal segment in a parallel cross-β structure: evidence from solid state NMR. J Mol Biol 409:263–277

    Article  PubMed  CAS  Google Scholar 

  • Lansbury PT, Costa PR, Griffiths JM, Simon EJ, Auger M, Halverson KJ, Kocisko DA, Hendsch ZS, Ashburn TT, Spencer RGS, Tidor B, Griffin RG (1995) Structural model for the β-amyloid fibril based on interstrand alignment of an antiparallel sheet comprising a C-terminal peptide. Nat Struct Biol 2:990–998

    Article  PubMed  CAS  Google Scholar 

  • Lazo ND, Downing DT (1998) Amyloid fibrils may be assembled from b-helical protofibrils. Biochemistry 37:1731–1735

    Article  PubMed  CAS  Google Scholar 

  • Li LP, Darden TA, Bartolotti L, Kominos D, Pedersen LG (1999) An atomic model for the pleated β-sheet structure of Aβ amyloid protofilaments. Biophys J 76:2871–2878

    Article  PubMed  CAS  Google Scholar 

  • Luca S, Yau WM, Leapman R, Tycko R (2007) Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid state NMR. Biochemistry 46:13505–13522

    Article  PubMed  CAS  Google Scholar 

  • Margittai M, Langen R (2004) Template-assisted filament growth by parallel stacking of tau. Proc Natl Acad Sci USA 101:10278–10283

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M (2006) Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313:1781–1784

    Article  PubMed  CAS  Google Scholar 

  • Mizuno N, Baxa U, Steven AC (2011) Structural dependence of HET-s amyloid fibril infectivity assessed by cryoelectron microscopy. Proc Natl Acad Sci USA 108:3252–3257

    Article  PubMed  CAS  Google Scholar 

  • Nielsen JT, Bjerring M, Jeppesen MD, Pedersen RO, Pedersen JM, Hein KL, Vosegaard T, Skrydstrup T, Otzen DE, Nielsen NC (2009) Unique identification of supramolecular structures in amyloid fibrils by solid state NMR spectroscopy. Angew Chem Int Ed Engl 48:2118–2121

    Article  PubMed  CAS  Google Scholar 

  • Paravastu AK, Leapman RD, Yau WM, Tycko R (2008) Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc Natl Acad Sci USA 105:18349–18354

    Article  PubMed  CAS  Google Scholar 

  • Paravastu AK, Qahwash I, Leapman RD, Meredith SC, Tycko R (2009) Seeded growth of β-amyloid fibrils from Alzheimer’s brain-derived fibrils produces a distinct fibril structure. Proc Natl Acad Sci USA 106:7443–7448

    Article  PubMed  CAS  Google Scholar 

  • Petkova AT, Buntkowsky G, Dyda F, Leapman RD, Yau WM, Tycko R (2004) Solid state NMR reveals a pH-dependent antiparallel β-sheet registry in fibrils formed by a β-amyloid peptide. J Mol Biol 335:247–260

    Article  PubMed  CAS  Google Scholar 

  • Petkova AT, Leapman RD, Guo ZH, Yau WM, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science 307:262–265

    Article  PubMed  CAS  Google Scholar 

  • Petkova AT, Yau WM, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils. Biochemistry 45:498–512

    Article  PubMed  CAS  Google Scholar 

  • Qiang W, Yau WM, Tycko R (2011) Structural evolution of Iowa mutant β-amyloid fibrils from polymorphic to homogeneous states under repeated seeded growth. J Am Chem Soc 133:4018–4029

    Article  PubMed  CAS  Google Scholar 

  • Qiang W, Yau WM, Luo Y, Mattson MP, Tycko R (2012) Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils. Proc Natl Acad Sci USA 109:4443–4448

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Kienlen-Campard P, Ahmed M, Liu W, Li HL, Elliott JI, Aimoto S, Constantinescu SN, Octave JN, Smith SO (2006) Inhibitors of amyloid toxicity based on β-sheet packing of Aβ 40 and Aβ 42. Biochemistry 45:5503–5516

    Article  PubMed  CAS  Google Scholar 

  • Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJW, McFarlane HT, Madsen AO, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447:453–457

    Article  PubMed  CAS  Google Scholar 

  • Schutz AK, Soragni A, Hornemann S, Aguzzi A, Ernst M, Bockmann A, Meier BH (2011) The amyloid-Congo Red interface at atomic resolution. Angew Chem Int Ed Engl 50:5956–5960

    Article  PubMed  Google Scholar 

  • Shewmaker F, Wickner RB, Tycko R (2006) Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure. Proc Natl Acad Sci USA 103:19754–19759

    Article  PubMed  CAS  Google Scholar 

  • Sievers SA, Karanicolas J, Chang HW, Zhao A, Jiang L, Zirafi O, Stevens JT, Munch J, Baker D, Eisenberg D (2011) Structure-based design of non-natural amino acid inhibitors of amyloid fibril formation. Nature 475:96–100

    Article  PubMed  CAS  Google Scholar 

  • Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729–739

    Article  PubMed  CAS  Google Scholar 

  • Telling GC, Parchi P, DeArmond SJ, Cortelli P, Montagna P, Gabizon R, Mastrianni J, Lugaresi E, Gambetti P, Prusiner SB (1996) Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274:2079–2082

    Article  PubMed  CAS  Google Scholar 

  • Tjernberg LO, Callaway DJE, Tjernberg A, Hahne S, Lilliehook C, Terenius L, Thyberg J, Nordstedt C (1999) A molecular model of Alzheimer amyloid β-peptide fibril formation. J Biol Chem 274:12619–12625

    Article  PubMed  CAS  Google Scholar 

  • Torok M, Milton S, Kayed R, Wu P, McIntire T, Glabe CG, Langen R (2002) Structural and dynamic features of Alzheimer’s Aβ peptide in amyloid fibrils studied by site-directed spin labeling. J Biol Chem 277:40810–40815

    Article  PubMed  Google Scholar 

  • Toyama BH, Kelly MJS, Gross JD, Weissman JS (2007) The structural basis of yeast prion strain variants. Nature 449:233–237

    Article  PubMed  CAS  Google Scholar 

  • Tycko R (2006) Molecular structure of amyloid fibrils: insights from solid state NMR. Q Rev Biophys 39:1–55

    Article  PubMed  CAS  Google Scholar 

  • Tycko R (2011) Solid state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–299

    Article  PubMed  CAS  Google Scholar 

  • Tycko R, Hu K-N (2010) A Monte Carlo/simulated annealing algorithm for sequential resonance assignment in solid state NMR of uniformly labeled proteins with magic-angle spinning. J Magn Reson 205:304–314

    Article  PubMed  CAS  Google Scholar 

  • Tycko R, Sciarretta KL, Orgel J, Meredith SC (2009) Evidence for novel β-sheet structures in Iowa mutant β-amyloid fibrils. Biochemistry 48:6072–6084

    Article  PubMed  CAS  Google Scholar 

  • Tycko R, Savtchenko R, Ostapchenko VG, Makarava N, Baskakov IV (2010) The α-helical C-terminal domain of full-length recombinant PrP converts to an in-register parallel β-sheet structure in PrP fibrils: evidence from solid state nuclear magnetic resonance. Biochemistry 49:9488–9497

    Article  PubMed  CAS  Google Scholar 

  • Van Melckebeke H, Wasmer C, Lange A, Eiso AB, Loquet A, Bockmann A, Meier BH (2010) Atomic-resolution three-dimensional structure of HET-s218-289 amyloid fibrils by solid state NMR spectroscopy. J Am Chem Soc 132:13765–13775

    Article  PubMed  Google Scholar 

  • Wasmer C, Soragni A, Sabate R, Lange A, Riek R, Meier BH (2008) Infectious and noninfectious amyloids of the HET-s218-289 prion have different NMR spectra. Angew Chem Int Ed Engl 47:5839–5841

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB, Dyda F, Tycko R (2008) Amyloid of Rnq1p, the basis of the [PIN+] prion, has a parallel in-register β-sheet structure. Proc Natl Acad Sci USA 105:2403–2408

    Article  PubMed  CAS  Google Scholar 

  • Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, Dannals RF, Nandi A, Brasic JR, Ye WG, Hilton J, Lyketsos C, Kung HF, Joshi AD, Skovronsky DM, Pontecorvo MJ (2010) In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (Flobetapir F 18). J Nucl Med 51:913–920

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, a component of the U.S. National Institutes of Health. I thank present and past members of my research group, including Drs. Oleg Antzutkin, Yoshitaka Ishii, John Balbach, Nathan Oyler, Jerry Chan, Aneta Petkova, Anant Paravastu, Kent Thurber, Junxia Lu, and Wei Qiang, for their many contributions to this work. I also thank Prof. Stephen C. Meredith of the University of Chicago for collaborating on several aspects of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tycko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tycko, R. (2013). β-Amyloid Fibril Structures, In Vitro and In Vivo. In: Jucker, M., Christen, Y. (eds) Proteopathic Seeds and Neurodegenerative Diseases. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35491-5_2

Download citation

Publish with us

Policies and ethics