Skip to main content

On the Impact of Identifiers on Local Decision

  • Conference paper
Principles of Distributed Systems (OPODIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7702))

Included in the following conference series:

Abstract

The issue of identifiers is crucial in distributed computing. Informally, identities are used for tackling two of the fundamental difficulties that are inherent to deterministic distributed computing, namely: (1) symmetry breaking, and (2) topological information gathering. In the context of local computation, i.e., when nodes can gather information only from nodes at bounded distances, some insight regarding the role of identities has been established. For instance, it was shown that, for large classes of construction problems, the role of the identities can be rather small. However, for the identities to play no role, some other kinds of mechanisms for breaking symmetry must be employed, such as edge-labeling or sense of direction. When it comes to local distributed decision problems, the specification of the decision task does not seem to involve symmetry breaking. Therefore, it is expected that, assuming nodes can gather sufficient information about their neighborhood, one could get rid of the identities, without employing extra mechanisms for breaking symmetry. We tackle this question in the framework of the \(\mathcal{LOCAL}\) model.

Let LD be the class of all problems that can be decided in a constant number of rounds in the \(\mathcal{LOCAL}\) model. Similarly, let LD* be the class of all problems that can be decided at constant cost in the anonymous variant of the \(\mathcal{LOCAL}\) model, in which nodes have no identities, but each node can get access to the (anonymous) ball of radius t around it, for any t, at a cost of t. It is clear that LD* ⊆ LD. We conjecture that LD*=LD. In this paper, we give several evidences supporting this conjecture. In particular, we show that it holds for hereditary problems, as well as when the nodes know an arbitrary upper bound on the total number of nodes. Moreover, we prove that the conjecture holds in the context of non-deterministic local decision, where nodes are given certificates (independent of the identities, if they exist), and the decision consists in verifying these certificates. In short, we prove that NLD*=NLD.

This work is supported by the Jules Verne Franco-Icelandic bilateral scientific framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its applications to self stabilization. Theoretical Computer Science 186(1-2), 199–230 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angluin, D.: Local and Global Properties in Networks of Processors. In: Proc. Twelfth ACM Symp. on Theory of Computing, STOC, pp. 82–93 (1980)

    Google Scholar 

  3. Amit, A., Linial, N., Matousek, J., Rozenman, E.: Random lifts of graphs. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, SODA, pp. 883–894 (2001)

    Google Scholar 

  4. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-Stabilization By Local Checking and Correction. In: Proc. IEEE Symp. on the Foundations of Computer Science, FOCS, pp. 268–277 (1991)

    Google Scholar 

  5. Barenboim, L., Elkin, M.: Distributed (Δ + 1)-coloring in linear (in delta) time. In: Proc. 41st ACM Symp. on Theory of Computing, STOC, pp. 111–120 (2009)

    Google Scholar 

  6. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed Verification and Hardness of Distributed Approximation. In: Proc. 43rd ACM Symp. on Theory of Computing, STOC (2011)

    Google Scholar 

  7. Dereniowski, D., Pelc, A.: Drawing maps with advice. Journal of Parallel and Distributed Computing 72, 132–143 (2012)

    Article  MATH  Google Scholar 

  8. Dolev, S., Gouda, M., Schneider, M.: Requirements for silent stabilization. Acta Informatica 36(6), 447–462 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-weight spanning trees. ACM Trans. on Programming Languages and Systems 5, 66–77 (1983)

    Article  MATH  Google Scholar 

  10. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed Computing with Advice: Information Sensitivity of Graph Coloring. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Communication algorithms with advice. J. Comput. Syst. Sci. 76(3-4), 222–232 (2008)

    Article  MathSciNet  Google Scholar 

  12. Fraigniaud, P., Korman, A., Lebhar, E.: Local MST computation with short advice. In: Proc. 19th ACM Symp. on Parallelism in Algorithms and Architectures, SPAA, pp. 154–160 (2007)

    Google Scholar 

  13. Fraigniaud, P., Korman, A., Peleg, D.: Local Distributed Decision. In: Proc. 52nd Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 708–717 (2011)

    Google Scholar 

  14. Fraigniaud, P., Korman, A., Parter, M., Peleg, D.: Randomized Distributed Decision, http://arxiv.org/abs/1207.0252

  15. Fraigniaud, P., Pelc, A.: Decidability Classes for Mobile Agents Computing. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 362–374. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and Checkability in Wait-Free Computing. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 333–347. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Fraigniaud, P., Rajsbaum, S., Travers, C.: Universal Distributed Checkers and Orientation-Detection Tasks (submitted, 2012)

    Google Scholar 

  18. Fusco, E.G., Pelc, A.: Communication Complexity of Consensus in Anonymous Message Passing Systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 191–206. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Göös, M., Suomela, J.: Locally checkable proofs. In: Proc. 30th ACM Symp. on Principles of Distributed Computing, PODC (2011)

    Google Scholar 

  20. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. In: Proc. 31st Symposium on Principles of Distributed Computing, PODC (2012)

    Google Scholar 

  21. Hasemann, H., Hirvonen, J., Rybicki, J., Suomela, J.: Deterministic Local Algorithms, Unique Identifiers, and Fractional Graph Colouring. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 48–60. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Hanckowiak, M., Karonski, M., Panconesi, A.: On the Distributed Complexity of Computing Maximal Matchings. SIAM J. Discrete Math. 15(1), 41–57 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kor, L., Korman, A., Peleg, D.: Tight Bounds For Distributed MST Verification. In: Proc. 28th Int. Symp. on Theoretical Aspects of Computer Science, STACS (2011)

    Google Scholar 

  24. Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Distributed Computing 20, 253–266 (2007)

    Article  Google Scholar 

  25. Korman, A., Kutten, S., Masuzawa, T.: Fast and Compact Self-Stabilizing Verification, Computation, and Fault Detection of an MST. In: Proc. 30th ACM Symp. on Principles of Distributed Computing, PODC (2011)

    Google Scholar 

  26. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distributed Computing 22, 215–233 (2010)

    Article  Google Scholar 

  27. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Detailed version, http://ie.technion.ac.il/~kutten/ps-links/ProofLabelingSchemes.ps

  28. Korman, A., Sereni, J.S., Viennot, L.: Toward More Localized Local Algorithms: Removing Assumptions Concerning Global Knowledge. In: Proc. 30th ACM Symp. on Principles of Distributed Computing, PODC, pp. 49–58 (2011)

    Google Scholar 

  29. Kuhn, F.: Weak graph colorings: distributed algorithms and applications. In: Proc. 21st ACM Symp. on Parallel Algorithms and Architectures, SPAA, pp. 138–144 (2009)

    Google Scholar 

  30. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lotker, Z., Patt-Shamir, B., Rosen, A.: Distributed Approximate Matching. SIAM J. Comput. 39(2), 445–460 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15, 1036–1053 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Panconesi, A., Srinivasan, A.: On the Complexity of Distributed Network Decomposition. J. Algorithms 20(2), 356–374 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)

    Google Scholar 

  36. Seinsche, D.: On a property of the class of n-colorable graphs. J. Combinatorial Theory, Ser. B 16, 191–193 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fraigniaud, P., Halldórsson, M.M., Korman, A. (2012). On the Impact of Identifiers on Local Decision. In: Baldoni, R., Flocchini, P., Binoy, R. (eds) Principles of Distributed Systems. OPODIS 2012. Lecture Notes in Computer Science, vol 7702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35476-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35476-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35475-5

  • Online ISBN: 978-3-642-35476-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics