Skip to main content

Learning to Rank from Medical Imaging Data

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2012)

Abstract

Medical images can be used to predict a clinical score coding for the severity of a disease, a pain level or the complexity of a cognitive task. In all these cases, the predicted variable has a natural order. While a standard classifier discards this information, we would like to take it into account in order to improve prediction performance. A standard linear regression does model such information, however the linearity assumption is likely not be satisfied when predicting from pixel intensities in an image. In this paper we address these modeling challenges with a supervised learning procedure where the model aims to order or rank images. We use a linear model for its robustness in high dimension and its possible interpretation. We show on simulations and two fMRI datasets that this approach is able to predict the correct ordering on pairs of images, yielding higher prediction accuracy than standard regression and multiclass classification techniques.

This work was supported by the ViMAGINE ANR- 08-BLAN-0250-02, IRMGroup ANR-10-BLAN-0126-02 and Construct ANR grants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burges, C.J.C.: From RankNet to LambdaRank to LambdaMART: An overview. Learning 11(MSR-TR-2010-82), 23–581 (2010)

    Google Scholar 

  2. Carroll, M.K., Cecchi, G.A., Rish, I., Garg, R., Rao, A.R.: Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 44(1), 112–122 (2009)

    Article  Google Scholar 

  3. Cauvet, E.: Traitement des Structures Syntaxiques dans le langage et dans la musique. Ph.D. thesis, Ecole doctorale n158, Cerveau - Cognition - Comportement (2012)

    Google Scholar 

  4. Cuingnet, R., Rosso, C., Chupin, M., Lehéricy, S., Dormont, D., Benali, H., Samson, Y., Colliot, O.: Spatial regularization of SVM for the detection of diffusion alterations associated with stroke outcome. Medical Image Analysis (2011)

    Google Scholar 

  5. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A.J., Vapnik, V.: Support vector regression machines. In: NIPS, pp. 155–161 (1996)

    Google Scholar 

  6. Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L., Pietrini, P.: Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex. Science 293(5539), 2425–2430 (2001)

    Article  Google Scholar 

  7. Haynes, J.D., Rees, G.: Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 7, 523 (2006)

    Article  Google Scholar 

  8. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regression, vol. 88, pp. 115–132. MIT Press, Cambridge (2000)

    Google Scholar 

  9. Jimura, K., Poldrack, R.A.: Analyses of regional-average activation and multivoxel pattern information tell complementary stories. Neuropsychologia, 1–9 (2011)

    Google Scholar 

  10. Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2006, pp. 217–226. ACM, New York (2006)

    Google Scholar 

  11. Kay, K.N., Naselaris, T., Prenger, R.J., Gallant, J.L.: Identifying natural images from human brain activity. Nature 452, 352–355 (2008)

    Article  Google Scholar 

  12. LaConte, S., Strother, S., Cherkassky, V., Anderson, J., Hu, X.: Support vector machines for temporal classification of block design fMRI data. NeuroImage 26(2), 317–329 (2005)

    Article  Google Scholar 

  13. Liu, H., Palatucci, M., Zhang, J.: Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 649–656. ACM, New York (2009)

    Google Scholar 

  14. Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Thirion, B.: Total variation regularization for fMRI-based prediction of behaviour. IEEE Transactions on Medical Imaging 30(7), 1328–1340 (2011)

    Article  Google Scholar 

  15. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

    Google Scholar 

  16. Richardson, M., Prakash, A., Brill, E.: Beyond PageRank: machine learning for static ranking. In: WWW 2006, pp. 707–715. ACM, New York (2006)

    Google Scholar 

  17. Tom, S.M., Fox, C.R., Trepel, C., Poldrack, R.A.: The neural basis of loss aversion in decision-making under risk. Science 315(5811), 515–518 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pedregosa, F., Cauvet, E., Varoquaux, G., Pallier, C., Thirion, B., Gramfort, A. (2012). Learning to Rank from Medical Imaging Data. In: Wang, F., Shen, D., Yan, P., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2012. Lecture Notes in Computer Science, vol 7588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35428-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35428-1_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35427-4

  • Online ISBN: 978-3-642-35428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics