Skip to main content

How to Visualize Large Data Sets?

  • Conference paper
Advances in Self-Organizing Maps

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 198))

Abstract

We address novel developments in the context of dimensionality reduction for data visualization. We consider nonlinear non-parametric techniques such as t-distributed stochastic neighbor embedding and discuss the difficulties which are encountered if large data sets are dealt with, in contrast to parametric approaches such as the self-organizing map. We focus on the following topics, which arise in this context: (i) how can dimensionality reduction be realized efficiently in at most linear time, (ii) how can nonparametric approaches be extended to provide an explicit mapping, (iii) how can techniques be extended to incorporate auxiliary information as provided by class labeling?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bengio, Y., Paiement, J.-F., Vincent, P., Delalleau, O., Roux, N.L., Ouimet, M.: Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering. In: Advances in Neural Information Processing Systems, pp. 177–184. MIT Press (2004)

    Google Scholar 

  2. Biehl, M., Hammer, B., Merényi, E., Sperduti, A., Villmann, T.: Learning in the context of very high dimensional data (Dagstuhl Seminar 11341), vol. 1 (2011)

    Google Scholar 

  3. Bishop, C.M., Svensén, M., Williams, C.K.I.: Gtm: The generative topographic mapping. Neural Computation 10, 215–234 (1998)

    Article  Google Scholar 

  4. Bunte, K., Biehl, M., Hammer, B.: A general framework for dimensionality reducing data visualization mapping. Neural Computation 24(3), 771–804 (2012)

    Article  MATH  Google Scholar 

  5. Gisbrecht, A., Hammer, B.: Relevance learning in generative topographic mapping. Neurocomputing 74(9), 1359–1371 (2011)

    Article  Google Scholar 

  6. Gisbrecht, A., Hammer, B., Schleif, F.-M., Zhu, X.: Accelerating dissimilarity clustering for biomedical data analysis. In: IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 154–161 (2011)

    Google Scholar 

  7. Gisbrecht, A., Hofmann, D., Hammer, B.: Discriminative Dimensionality Reduction Mappings. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 126–138. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Gisbrecht, A., Lueks, W., Mokbel, B., Hammer, B.: Out-of-sample kernel extensions for nonparametric dimensionality reduction. In: ESANN 2012, pp. 531–536 (2012)

    Google Scholar 

  9. Hammer, B., Gisbrecht, A., Hasenfuss, A., Mokbel, B., Schleif, F.-M., Zhu, X.: Topographic Mapping of Dissimilarity Data. In: Laaksonen, J., Honkela, T. (eds.) WSOM 2011. LNCS, vol. 6731, pp. 1–15. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity datasets. Neural Computation 22(9), 2229–2284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaski, S., Sinkkonen, J., Peltonen, J.: Bankruptcy analysis with self-organizing maps in learning metrics. IEEE Transactions on Neural Networks 12, 936–947 (2001)

    Article  Google Scholar 

  12. Kohonen, T.: Self-Organizing Maps. Springer (2000)

    Google Scholar 

  13. Lee, J.A., Verleysen, M.: Nonlinear dimensionality redcution. Springer (2007)

    Google Scholar 

  14. Peltonen, J., Klami, A., Kaski, S.: Improved learning of riemannian metrics for exploratory analysis. Neural Networks 17, 1087–1100 (2004)

    Article  MATH  Google Scholar 

  15. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Computation 21, 3532–3561 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society, Series B 61, 611–622 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. van der Maaten, L., Hinton, G.: Visualizing high-dimensional data using t-sne. Journal of Machine Learning Research 9, 2579–2605 (2008)

    MATH  Google Scholar 

  18. van der Maaten, L., Postma, E., van den Herik, H.: Dimensionality reduction: A comparative review. Technical report, Tilburg University Technical Report, TiCC-TR 2009-005 (2009)

    Google Scholar 

  19. Venna, J., Peltonen, J., Nybo, K., Aidos, H., Kaski, S.: Information retrieval perspective to nonlinear dimensionality reduction for data visualization. Journal of Machine Learning Research 11, 451–490 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Ward, M., Grinstein, G., Keim, D.A.: Interactive Data Visualization: Foundations, Techniques, and Application. A. K. Peters, Ltd. (2010)

    Google Scholar 

  21. Yin, H.: On the equivalence between kernel self-organising maps and self-organising mixture density networks. Neural Networks 19(6-7), 780–784 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Hammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hammer, B., Gisbrecht, A., Schulz, A. (2013). How to Visualize Large Data Sets?. In: Estévez, P., Príncipe, J., Zegers, P. (eds) Advances in Self-Organizing Maps. Advances in Intelligent Systems and Computing, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35230-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35230-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35229-4

  • Online ISBN: 978-3-642-35230-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics