Skip to main content

Transgenerational Epigenetic Inheritance in Plants

  • Chapter
  • First Online:
Epigenetic Memory and Control in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 18))

Abstract

Epigenetics is broadly defined as the heritable change in gene expression without base sequence alteration. Heritable epigenetic changes commonly occur from cell to cell in an individual organism during development. Whether or not they occur from individual to individual, or across generation, has long been a matter of argument, but recent surveys suggest it to be positive. One of the underlying mechanisms is thought to be DNA methylation. Many studies have suggested that phenotype and DNA methylation patterns simultaneously change upon environmental stresses and are occasionally transmitted to the progeny. Here, we filtered each case through three conditions: phenotypic changes, i.e., acquired characters are beneficial for the organism; inheritance extends, at least, over three generations; and responsible genes are identified. Few cases fulfill these conditions demonstrating the cause–effect relationship between methylation of causative genes and phenotypic changes. Nevertheless the findings indicate that, under certain circumstances, acquired traits are heritable over generations and may play critical roles in evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AA, Laforsch C, Tollrian R (1999) Transgenerational induction of defences in animals and plants. Nature 401:60–63

    Article  CAS  Google Scholar 

  • Aina R, Sgorbati S, Santagostino A, Labra M, Ghiani A, Citterio S (2004) Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plant 121:472–480

    Article  CAS  Google Scholar 

  • Akimoto K, Katakami H, Kim HJ, Ogawa E, Sano CM, Wada Y, Sano H (2007) Epigenetic inheritance in rice plants. Ann Bot 100:205–217

    Article  PubMed  CAS  Google Scholar 

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  PubMed  CAS  Google Scholar 

  • Anway MD, Leathers C, Skinner MK (2006) Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 147:5515–5523

    Article  PubMed  CAS  Google Scholar 

  • Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K, Weigel D (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–249

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya MK, Smith AM, Ellis TH, Hedley C, Martin C (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60:115–122

    Article  PubMed  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  • Bruner-Tran KL, Osteen KG (2011) Developmental exposure to TCDD reduces fertility and negatively affects pregnancy outcomes across multiple generations. Reprod Toxicol 31:344–350

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt RW (1970) Lamarck, evolution and the politics of science. J Hist Biol 3:275–298

    Article  PubMed  CAS  Google Scholar 

  • Cantu D, Vanzetti LS, Sumner A, Dubcovsky M, Matvienko M, Distelfeld A, Michelmore RW, Dubcovsky J (2010) Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics 11:408

    Article  PubMed  CAS  Google Scholar 

  • Chandler VL, Eggleston WB, Dorweiler JE (2000) Paramutation in maize. Plant Mol Biol 43:121–145

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  PubMed  CAS  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277:589–600

    Article  PubMed  CAS  Google Scholar 

  • Costa MM, Fox S, Hanna AI, Baxter C, Coen E (2005) Evolution of regulatory interactions controlling floral asymmetry. Development 132:5093–5101

    Article  PubMed  CAS  Google Scholar 

  • Crews D, Gillette R, Scarpino SV, Manikkam M, Savenkova MI, Skinner MK (2012) Epigenetic transgenerational inheritance of altered stress responses. Proc Natl Acad Sci U S A 109:9143–9148

    Article  PubMed  CAS  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  PubMed  CAS  Google Scholar 

  • Cullis CA (2005) Mechanisms and control of rapid genomic changes in flax. Ann Bot 95:201–206

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1872) The origin of species. John Murray, London

    Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A 109:E2183–E2191

    Article  PubMed  CAS  Google Scholar 

  • Durrant A (1962) The environmental induction of heritable change in Linum. Heredity 17:27–61

    Article  Google Scholar 

  • Finnegan EJ, Genger RK, Peacock WJ, Dennis ES (1998) DNA methylation in plants. Annu Rev Plant Physiol Plant Mol Biol 49:223–247

    Article  PubMed  CAS  Google Scholar 

  • Franklin TB, Mansuy IM (2010) Epigenetic inheritance in mammals: evidence for the impact of adverse environmental effects. Neurobiol Dis 39:61–65

    Article  PubMed  CAS  Google Scholar 

  • Furner IJ, Matzke M (2011) Methylation and demethylation of the Arabidopsis genome. Curr Opin Plant Biol 14:137–141

    Article  PubMed  CAS  Google Scholar 

  • Galaud JP, Gaspar T, Boyer N (1993) Inhibition of internode growth due to mechanical stress in Bryonia dioica: relationship between changes in DNA methylation and ethylene metabolism. Physiol Plant 87:25–30

    Article  CAS  Google Scholar 

  • Gertz J, Varley KE, Reddy TE, Bowling KM, Pauli F, Parker SL, Kucera KS, Willard HF, Myers RM (2011) Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation. PLoS Genet 7:e1002228. doi:10.1371/journal.pgen.1002228

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson A (1979) Linnaeus’ peloria: the history of a monster. Theor Appl Genet 54:241–248

    Article  Google Scholar 

  • Hackett JA, Zylicz JJ, Surani MA (2012) Parallel mechanisms of epigenetic reprogramming in the germline. Trends Genet 28:164–174

    Article  PubMed  CAS  Google Scholar 

  • Hall BK (1995) Atavisms and atavistic mutations. Nat Genet 10:126–127

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JD (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607

    Article  PubMed  CAS  Google Scholar 

  • Haring M, Bader R, Louwers M, Schwabe A, van Driel R, Stam M (2010) The role of DNA methylation, nucleosome occupancy and histone modifications in paramutation. Plant J 63:366–378

    Article  CAS  Google Scholar 

  • Hauser MT, Aufsatz W, Jonak C, Luschnig C (2011) Transgenerational epigenetic inheritance in plants. Biochim Biophys Acta 1809:459–468

    Article  PubMed  CAS  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  PubMed  CAS  Google Scholar 

  • Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447:418–424

    Article  PubMed  CAS  Google Scholar 

  • Hill DJ (1965) Environmental induction of heritable changes in Nicotiana rustica. Nature 207:732–734

    Article  Google Scholar 

  • Hirochika H, Okamoto H, Kakutani T (2000) Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. Plant Cell 12:357–368

    PubMed  CAS  Google Scholar 

  • Holeski LM (2007) Within and between generation phenotypic plasticity in trichome density of Mimulus guttatus. J Evol Biol 20:2092–2100

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (1993) Epigenetic inheritance based on DNA methylation. In: Jost JP, Saluz HP (eds) DNA methylation: molecular biology and biological significance. Birkhauser, Basel, pp 452–468

    Chapter  Google Scholar 

  • Holliday RH (2006) Epigenetics—a historical overview. Epigenetics 2:76–80

    Article  Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    Article  PubMed  CAS  Google Scholar 

  • Jablonka E, Lamb MJ (1989) The inheritance of acquired epigenetic variations. J Theor Biol 139:69–83

    Article  PubMed  CAS  Google Scholar 

  • Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    Article  PubMed  Google Scholar 

  • Johnson TB, Coghill RD (1925) Researches on pyrimidines. C111. The discovery of 5-methyl-cytosine in tuberculinic acid, the nucleic acid of the tubercle bacillus. J Am Chem Soc 47:2838–2844

    Article  CAS  Google Scholar 

  • Jones L, Ratcliff F, Baulcombe DC (2001) RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr Biol 11:747–757

    Article  PubMed  CAS  Google Scholar 

  • Jullien PE, Berger F (2010) DNA methylation reprogramming during plant sexual reproduction? Trends Genet 26:394–399

    Article  PubMed  CAS  Google Scholar 

  • Kalisz S, Purugganan MD (2004) Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol Evol 19:309–314

    Article  PubMed  Google Scholar 

  • Kammerer P (1923) Breeding experiments on the inheritance of acquired characters. Nature 111:637–640

    Article  Google Scholar 

  • Kappler JW (1971) The 5-methylcytosine content of DNA: tissue specificity. J Cell Physiol 78:33–36

    Article  PubMed  CAS  Google Scholar 

  • Kauffman HE, Reddy APK, Hsieh SPV, Merca SD (1973) An improved technique for evaluating resistance to rice varieties of Xanthomonas oryzae. Plant Dis Rep 57:537–541

    Google Scholar 

  • Keen NT (1990) Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24:447–463

    Article  PubMed  CAS  Google Scholar 

  • Khush GS, Bacalangco E, Ogata T (1991) A new gene for resistance to bacterial blight from O. longistaminata. Rice Genet Newsl 7:121–122

    Google Scholar 

  • Koestler A (1971) The case of the midwife toad. Hutchinson, London

    Google Scholar 

  • Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66

    Article  PubMed  CAS  Google Scholar 

  • Labra M, Ghiani A, Citterio S, Sgorbati S, Sala F, Vannini C, Ruffini-Castiglione M, Bracale M (2002) Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol (Stuttg) 4:694–699

    Article  CAS  Google Scholar 

  • Lamarck JB (1809) Philosophie zoologique. Dentu, Paris

    Google Scholar 

  • Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 3:594–602

    Article  PubMed  CAS  Google Scholar 

  • Lauria M, Rossi V (2011) Epigenetic control of gene regulation in plants. Biochim Biophys Acta 1809:369–378

    Article  PubMed  CAS  Google Scholar 

  • Lebel EG, Masson J, Bogucki A, Paszkowski J (1993) Stress-induced intrachromosomal recombination in plant somatic cells. Proc Natl Acad Sci U S A 90:422–426

    Article  PubMed  CAS  Google Scholar 

  • Lee SW, Jeong KS, Han SW, Lee SE, Phee BK, Hahn TR, Ronald P (2008) The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence. J Bacteriol 190:2183–2197

    Article  PubMed  CAS  Google Scholar 

  • Lee SW, Han SW, Sririyanum M, Park CJ, Seo YS, Ronald P (2009) A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326:850–853

    Article  PubMed  CAS  Google Scholar 

  • Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66

    Article  PubMed  CAS  Google Scholar 

  • Lönnig WE, Saedler H (1997) Plant transposons: contributors to evolution? Gene 205:245–253

    Article  PubMed  Google Scholar 

  • Lönnig WE, Saedler H (2002) Chromosome rearrangements and transposable elements. Annu Rev Genet 36:389–410

    Article  PubMed  CAS  Google Scholar 

  • Lucht JM, Mauch-Mani B, Steiner HY, Metraux JP, Ryals J, Hohn B (2002) Pathogen stress increases somatic recombination frequency in Arabidopsis. Nat Genet 30:311–314

    Article  PubMed  Google Scholar 

  • Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383:794–799

    Article  PubMed  CAS  Google Scholar 

  • Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  PubMed  CAS  Google Scholar 

  • Martin A, Troadecb C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Catherine C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135–1139

    Article  PubMed  CAS  Google Scholar 

  • Meyer P, Heidmann I, Niedenhof I (1993) Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J 4:89–100

    Article  PubMed  CAS  Google Scholar 

  • Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046–1049

    Article  PubMed  CAS  Google Scholar 

  • Mottinger JP, Johns MA, Freeling M (1984) Mutations of the Adh1 gene in maize following infection with barley stripe mosaic virus. Mol Gen Genet 195:367–369

    Article  PubMed  CAS  Google Scholar 

  • Neal PR, Dafni A, Giurfa M (1998) Floral symmetry and its role in plant-pollinator systems: terminology, distribution, and hypotheses. Annu Rev Ecol Syst 29:345–373

    Article  Google Scholar 

  • Nilsson E, Larsen G, Manikkam M, Guerrero-Bosagna C, Savenkova MI, Skinner MK (2012) Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS One 7:e36129

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski J, Grossniklaus U (2011) Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr Opin Plant Biol 14:195–203

    Article  PubMed  CAS  Google Scholar 

  • Pavet V, Quintero C, Cecchini NM, Rosa AL, Alvarez ME (2006) Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. Mol Plant Microbe Interact 19:577–587

    Article  PubMed  CAS  Google Scholar 

  • Portugal FH, Cohen JS (1980) A century of DNA: a history of the discovery of the structure and function of the genetic substance. MIT Press Classics Series, Cambridge, MA

    Google Scholar 

  • Puchta H, Swoboda P, Hohn B (1995) Induction of intrachromosomal homologous recombination in whole plants. Plant J 7:203–210

    Article  CAS  Google Scholar 

  • Rapp RA, Wendel JF (2005) Epigenetics and plant evolution. New Phytol 168:81–91

    Article  PubMed  CAS  Google Scholar 

  • Razran G (1958) Pavlov and Lamarck. Science 128:758–760

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7:395–402

    Article  PubMed  CAS  Google Scholar 

  • Richards CL, Bossdorf O, Verhoeven KJF (2010) Understanding natural epigenetic variation. New Phytol 187:562–564

    Article  PubMed  Google Scholar 

  • Riggs AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14:9–25

    Article  PubMed  CAS  Google Scholar 

  • Riggs AD, Porter TN (1996) Overview of epigenetic mechanisms. In: Russo VEA, Martienssen RA, Riggs AD (eds) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, New York, pp 29–45

    Google Scholar 

  • Ronald PC (1997) The molecular basis of disease resistance in rice. Plant Mol Biol 35:179–186

    Article  PubMed  CAS  Google Scholar 

  • Sager R, Kitchin R (1975) Selective silencing of eukaryotic DNA. Science 189:426–433

    Article  PubMed  CAS  Google Scholar 

  • Sano H (2010) Inheritance of acquired traits in plants: reinstatement of Lamarck. Plant Signal Behav 5:346–348

    Article  PubMed  CAS  Google Scholar 

  • Scarano E (1973) DNA methylation. Nature 246:539

    Article  PubMed  CAS  Google Scholar 

  • Scarano MI, Strazzullo M, Matarazzo MR, D’Esposito M (2005) DNA methylation 40 years later: its role in human health and disease. J Cell Physiol 204:21–35

    Article  PubMed  CAS  Google Scholar 

  • Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Urich MA, Libiger O, Schork NJ, Ecker JR (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369–373

    Article  PubMed  CAS  Google Scholar 

  • Scoville AG, Barnett LL, Bodbyl-Roels S, Kelly JK, Hileman LC (2011) Differential regulation of a MYB transcription factor is correlated with transgenerational epigenetic inheritance of trichome density in Mimulus guttatus. New Phytol 191:251–263

    Article  PubMed  CAS  Google Scholar 

  • Skinner MK (2008) What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol 25:2–6

    Article  PubMed  CAS  Google Scholar 

  • Song WY, Pi LY, Wang GL, Gardner J, Holsten T, Ronald PC (1997) Evolution of the rice Xa21 disease resistance gene family. Plant Cell 9:1279–1287

    PubMed  CAS  Google Scholar 

  • Soppe WJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M, Peeters AJ (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6:791–802

    Article  PubMed  CAS  Google Scholar 

  • Soyfer VN (2001) The consequences of political dictatorship for Russian science. Nat Rev Genet 2:723–729

    Article  PubMed  CAS  Google Scholar 

  • Stacey KA (1965) Intracellular modification of nucleic acids. Br Med Bull 21:211–216

    PubMed  CAS  Google Scholar 

  • Stam M, Mittelsten Scheid O (2005) Paramutation: an encounter leaving a lasting impression. Trends Plant Sci 10:283–290

    Article  PubMed  CAS  Google Scholar 

  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD (1995) Molecular genetics of plant disease resistance. Science 268:661–667

    Article  PubMed  CAS  Google Scholar 

  • Steward H, Kusano T, Sano H (2000) Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells. Nucleic Acids Res 28:3250–3259

    Article  PubMed  CAS  Google Scholar 

  • Susser M, Stein Z (1994) Timing in prenatal nutrition: a reprise of the Dutch famine study. Nutr Rev 52:84–94

    Article  PubMed  CAS  Google Scholar 

  • Takata M, Kiyohara A, Takasu A, Kishima Y, Ohtsubo H, Sano Y (2007) Rice transposable elements are characterized by various methylation environments in the genome. BMC Genomics 8:469. doi:10.1186/1471-2164-8-469

    Article  PubMed  Google Scholar 

  • Theissen G (2000) Evolutionary developmental genetics of floral symmetry: the revealing power of Linnaeus’ monstrous flower. Bioessays 22:209–213

    Article  PubMed  CAS  Google Scholar 

  • Thompson AJ, Tor M, Barry CS, Vrebalov J, Orfila C, Jarvis MC, Giovannoni JJ, Grierson D, Seymour GB (1999) Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant. Plant Physiol 120:383–390

    Article  PubMed  CAS  Google Scholar 

  • Tomić N, Meyer-Rochow VB (2011) Atavisms: medical, genetic, and evolutionary implications. Perspect Biol Med 54:332–353

    Article  PubMed  Google Scholar 

  • Tran RK, Zilberman D, de Bustos C, Ditt RF, Henikoff JG, Lindroth AM, Delrow J, Boyle T, Kwong S, Bryson TD, Jacobsen SE, Henikoff S (2005) Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis. Genome Biol 6:R90. doi:10.1186/gb-2005-6-11-r90

    Article  PubMed  CAS  Google Scholar 

  • Vargas AO (2009) Did Paul Kammerer discover epigenetic inheritance? A modern look at the controversial midwife toad experiments. J Exp Zool B Mol Dev Evol 312:667–678

    Article  PubMed  Google Scholar 

  • Wada Y, Miyamoto K, Kusano T, Sano H (2004) Association between upregulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genomics 271:658–666

    Article  PubMed  CAS  Google Scholar 

  • Waddington CH (1942) The epigenotype. Endeavour 1:18–20

    Google Scholar 

  • Walbot V (1992) Reactivation of Mutator transposable elements of maize by ultraviolet light. Mol Gen Genet 234:353–360

    Article  PubMed  CAS  Google Scholar 

  • Walker EL, Panavas T (2001) Structural features and methylation patterns associated with paramutation at the r1 locus of Zea mays. Genetics 159:1201–1215

    PubMed  CAS  Google Scholar 

  • Wang GL, Song WY, Ruan DL, Sideris S, Ronald PC (1996) The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol Plant Microbe Interact 9:850–855

    Article  PubMed  CAS  Google Scholar 

  • Wang GL, Ruan DL, Song WY, Sideris S, Chen L, Pi LY, Zhang S, Zhang Z, Fauquet C, Gaut BS, Whalen MC, Ronald PC (1998) Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 10:765–779

    PubMed  CAS  Google Scholar 

  • Wong LH, Choo KH (2004) Evolutionary dynamics of transposable elements at the centromere. Trends Genet 20:611–616

    Article  PubMed  CAS  Google Scholar 

  • Wyatt GR (1950) Occurrence of 5-methyl-cytosine in nucleic acids. Nature 166:237–238

    Article  PubMed  CAS  Google Scholar 

  • Zamenhof S, van Marthens E, Grauel L (1971) DNA (cell number) in neonatal brain: second generation (F2) alteration by maternal (F0) dietary protein restriction. Science 172:850–851

    Article  PubMed  CAS  Google Scholar 

  • Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B, Brooks MD, Zilberman D (2010) Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci U S A 107:18729–18734

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Yong Eui Choi, Kangwon National University, for helping the present project. This work was supported by the WCU project of the Ministry of Education, Science and Technology, Korea, and by the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Sano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sano, H., Kim, HJ. (2013). Transgenerational Epigenetic Inheritance in Plants. In: Grafi, G., Ohad, N. (eds) Epigenetic Memory and Control in Plants. Signaling and Communication in Plants, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35227-0_11

Download citation

Publish with us

Policies and ethics