Skip to main content

Plant Epigenetics: A Historical Perspective

  • Chapter
  • First Online:
Epigenetic Memory and Control in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 18))

Abstract

The chemical marks that provide the major means by which epigenetics manifests its effect on chromatin structure and function have been discovered long ago almost along with the invention of the term epigenome by Conrad H. Waddington. However, it had to wait several decades before the connection between epigenetics and chemical modifications of DNA and histone proteins has been established. Many of the modifying enzymes responsible for the dynamic modifications of DNA and histones such as histone methyltransferases and histone demethylases have only recently been identified and molecularly characterized. This introductory chapter provides a historical view on epigenetics: when and how it has begun and where it is going.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allfrey VG, Mirsky AE (1964) Structural modifications of histones and their possible role in the regulation of RNA synthesis. Science 144:559

    PubMed  CAS  Google Scholar 

  • Allfrey VG, Littau VC, Mirsky AE (1963) On the role of histones in regulation ribonucleic acid synthesis in the cell nucleus. Proc Natl Acad Sci USA 49:414–421

    PubMed  CAS  Google Scholar 

  • Amasino RM, Powell AL, Gordon MP (1984) Changes in T-DNA methylation and expression are associated with phenotypic variation and plant regeneration in a crown gall tumor line. Mol Gen Genet 197:437–446

    PubMed  CAS  Google Scholar 

  • Ambler RP, Rees MW (1959) Epsilon-N-methyl-lysine in bacterial flagellar protein. Nature 184:56–57

    PubMed  CAS  Google Scholar 

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    PubMed  CAS  Google Scholar 

  • Azuara V, Perry P, Sauer S, Spivakov M, Jørgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538

    PubMed  CAS  Google Scholar 

  • Bartee L, Malagnac F, Bender J (2001) Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev 15:1753–1758

    PubMed  CAS  Google Scholar 

  • Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164–167

    PubMed  CAS  Google Scholar 

  • Berg A, Meza TJ, Mahić M, Thorstensen T, Kristiansen K, Aalen RB (2003) Ten members of the Arabidopsis gene family encoding methyl-CpG-binding domain proteins are transcriptionally active and at least one, AtMBD11, is crucial for normal development. Nucleic Acids Res 31:5291–5304

    PubMed  CAS  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    PubMed  CAS  Google Scholar 

  • Bessman MJ, Lehman IR, Adler J, Zimmerman SB, Simms ES, Kornberg A (1958) Enzymatic synthesis of deoxyribonucleic acid III. The incorporation of pyrimidine and purine analogues into deoxyribonucleic acid. Proc Natl Acad Sci USA 44:633–640

    PubMed  CAS  Google Scholar 

  • Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539

    PubMed  Google Scholar 

  • Boyes J, Bird A (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64:1123–1134

    PubMed  CAS  Google Scholar 

  • Butenko Y, Ohad N (2011) Polycomb-group mediated epigenetic mechanisms through plant evolution. Biochim Biophys Acta 1809:395–406

    PubMed  CAS  Google Scholar 

  • Cao X, Jacobsen SE (2002) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144

    PubMed  CAS  Google Scholar 

  • Cao R, Zhang Y (2004) The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 14:155–164

    PubMed  CAS  Google Scholar 

  • Cao X, Springer NM, Muszynski MG, Phillips RL, Kaeppler S, Jacobsen SE (2000) Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Acad Sci USA 97:4979–4984

    PubMed  CAS  Google Scholar 

  • Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon YH, Sung ZR, Goodrich J (2004) Interaction of polycomb-group proteins controlling flowering in Arabidopsis. Development 131:5263–5276

    PubMed  CAS  Google Scholar 

  • Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:4223–4228

    PubMed  CAS  Google Scholar 

  • Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495

    PubMed  CAS  Google Scholar 

  • Crampton CF, Stein WH, Moore S (1957) Comparative studies on chromatographically purified histones. J Biol Chem 225:363–386

    PubMed  CAS  Google Scholar 

  • Deal RB, Henikoff S (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev Cell 18:1030–1040

    PubMed  CAS  Google Scholar 

  • DeLange RJ, Fambrough DM, Smith EL, Bonner J (1968) Calf and pea histone IV. I. Amino acid compositions and the identical COOH-terminal 19-residue sequence. J Biol Chem 243:5906–5913

    PubMed  CAS  Google Scholar 

  • Eissenberg JC, James TC, Foster-Hartnett D, Hartnett T, Ngan V, Elgin SCR (1990) Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci USA 87:9923–9927

    PubMed  CAS  Google Scholar 

  • Exner V, Aichinger E, Shu H, Wildhaber T, Alfarano P, Caflisch A, Gruissem W, Köhler C, Hennig L (2009) The chromodomain of LIKE HETEROCHROMATIN PROTEIN 1 is essential for H3K27me3 binding and function during Arabidopsis development. 4:e5335

    Google Scholar 

  • Filion GJ, Zhenilo S, Salozhin S, Yamada D, Prokhortchouk E, Defossez PA (2006) A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol Cell Biol 26:169–181

    PubMed  CAS  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA 93:8449–8454

    PubMed  CAS  Google Scholar 

  • Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by polycomb and HP1 chromodomains. Genes Dev 17:1870–1881

    PubMed  CAS  Google Scholar 

  • Francis NJ, Kingston RE, Woodcock CL (2004) Chromatin compaction by a polycomb group protein complex. Science 306:1574–1577

    PubMed  CAS  Google Scholar 

  • Fucík V, Michaelis A, Rieger R (1970) On the induction of segment extension and chromatid structural changes in Vicia faba chromosomes after treatment with 5-azacytidine and 5-azadeoxycytidine. Mutat Res 9:599–606

    PubMed  Google Scholar 

  • Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 12:495–506

    Google Scholar 

  • Gendall AR, Levy YY, Wilson A, Dean C (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525–535

    PubMed  CAS  Google Scholar 

  • Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G (1997) A polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386:44–51

    PubMed  CAS  Google Scholar 

  • Gorovsky MA, Pleger GL, Keevert JB, Johmann CA (1973) Studies on histone fraction F2A1 in macro- and micronuclei of Tetrahymena pyriformis. J Cell Biol 57:773–781

    PubMed  CAS  Google Scholar 

  • Grafi G, Zemach A, Pitto L (2007) Methyl-CpG-binding domain (MBD) proteins in plants. Biochim Biophys Acta 1769:287–294

    PubMed  CAS  Google Scholar 

  • Grafi G, Florentin A, Ransbotyn V, Morgenstern Y (2011) The stem cell state in plant development and in response to stress. Front Plant Sci 2:53

    PubMed  CAS  Google Scholar 

  • Granot G, Sikron-Persi N, Gaspan O, Florentin A, Talwara S, Paul LK, Morgenstern Y, Granot Y, Grafi G (2009) Histone modifications associated with drought tolerance in the desert plant Zygophyllum dumosum Boiss. Planta 231:27–34

    PubMed  CAS  Google Scholar 

  • Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280:446–450

    PubMed  CAS  Google Scholar 

  • Guitton AE, Berger F (2005) Control of reproduction by polycomb group complexes in animals and plants. Int J Dev Biol 49:707–716

    PubMed  CAS  Google Scholar 

  • Hata K, Okano M, Lei H, Li E (2002) Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129:1983–1993

    PubMed  CAS  Google Scholar 

  • He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, Liang M, He H, Zhang H, Chen F, Qi Y, Chen R, Deng XW (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22:17–33

    PubMed  CAS  Google Scholar 

  • Henckel A, Nakabayashi K, Sanz LA, Feil R, Hata K, Arnaud P (2009) Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals. Hum Mol Genet 18:3375–3383

    PubMed  CAS  Google Scholar 

  • Henderson IR, Deleris A, Wong W, Zhong X, Chin HG, Horwitz GA, Kelly KA, Pradhan S, Jacobsen SE (2010) The de novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in Arabidopsis thaliana. PLoS Genet 6:e1001182

    PubMed  Google Scholar 

  • Hotchkiss RD (1948) The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem 175:315–332

    PubMed  CAS  Google Scholar 

  • Hsieh TF, Hakim O, Ohad N, Fischer RL (2003) From flour to flower: how polycomb group proteins influence multiple aspects of plant development. Trends Plant Sci 8:439–445

    PubMed  CAS  Google Scholar 

  • Huang RC, Bonner J (1962) Histone, a suppressor of chromosomal RNA synthesis. Proc Natl Acad Sci USA 48:1216–1222

    PubMed  CAS  Google Scholar 

  • Ito M, Koike A, Koizumi N, Sano H (2003) Methylated DNA-binding proteins from Arabidopsis. Plant Physiol 133:1747–1754

    PubMed  CAS  Google Scholar 

  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560

    PubMed  CAS  Google Scholar 

  • Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277:1100–1103

    PubMed  CAS  Google Scholar 

  • Jacobsen SE, Sakai H, Finnegan EJ, Cao X, Meyerowitz EM (2000) Ectopic hypermethylation of flower-specific genes in Arabidopsis. Curr Biol 10:179–186

    PubMed  CAS  Google Scholar 

  • Jeddeloh JA, Bender J, Richards EJ (1998) The DNA methylation locus DDM1 is required for maintenance of gene silencing in Arabidopsis. Genes Dev 12:1714–1725

    PubMed  CAS  Google Scholar 

  • Jeddeloh JA, Stokes TL, Richards EJ (1999) Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet 22:94–97

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    PubMed  CAS  Google Scholar 

  • John MC, Amasino RM (1989) Extensive changes in DNA methylation patterns accompany activation of a silent T-DNA ipt gene in Agrobacterium tumefaciens-transformed plant cells. Mol Cell Biol 9:4298–4303

    PubMed  CAS  Google Scholar 

  • Johnson TB, Coghill RD (1925) Pyrimidines. CIII. The discovery of 5-methylcytosine in tuberculinic acid, the nucleic acid of the tubercle bacillus. J Am Chem Soc 47:2838–2844

    CAS  Google Scholar 

  • Johnson LM, Bostick M, Zhang X, Kraft E, Henderson I, Callis J, Jacobsen SE (2007) The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr Biol 17:379–384

    PubMed  CAS  Google Scholar 

  • Jullien PE, Katz A, Oliva M, Ohad N, Berger F (2006) Polycomb group complexes self-regulate imprinting of the polycomb group gene MEDEA in Arabidopsis. Curr Biol 16:486–492

    PubMed  CAS  Google Scholar 

  • Kakutani T, Jeddeloh JA, Richards EJ (1995) Characterization of an Arabidopsis thaliana DNA hypomethylation mutant. Nucleic Acids Res 2:130–137

    Google Scholar 

  • Kakutani T, Jeddeloh JA, Flowers SK, Munakata K, Richards EJ (1996) Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci USA 93:12406–12411

    PubMed  CAS  Google Scholar 

  • Kalousek F, Morris NR (1969) Deoxyribonucleic acid methylase activity in pea seedlings. Science 164:721–722

    PubMed  CAS  Google Scholar 

  • Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163:1109–1122

    PubMed  CAS  Google Scholar 

  • Katz A, Oliva M, Mosquna A, Hakim O, Ohad N (2004) FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J 37:707–719

    PubMed  CAS  Google Scholar 

  • Kaye AM, Sheratzky D (1969) Methylation of protein (histone) in vitro: enzymic activity from the soluble fraction of rat organs. Biochim Biophys Acta 190:527–538

    PubMed  CAS  Google Scholar 

  • Kim DH, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 25:277–299

    PubMed  CAS  Google Scholar 

  • Kiyosue T, Ohad N, Yadegari R, Hannon M, Dinneny J, Wells D, Katz A, Margossian L, Harada JJ, Goldberg RB, Fischer RL (1999) Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc Natl Acad Sci USA 96:4186–4191

    PubMed  CAS  Google Scholar 

  • Kleinsmith LJ, Allfrey VG, Mirsky AE (1966) Phosphoprotein metabolism in isolated lymphocyte nuclei. Proc Natl Acad Sci USA 55:1182–1189

    PubMed  CAS  Google Scholar 

  • Kohler C, Villar CB (2008) Programming of gene expression by polycomb group proteins. Trends Cell Biol 18:236–243

    PubMed  Google Scholar 

  • Kohler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003a) Arabidopsis MSI1 is a component of the MEA/FIE polycomb group complex and required for seed development. EMBO J 22:4804–4814

    PubMed  Google Scholar 

  • Kohler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U (2003b) The polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev 17:1540–1553

    PubMed  Google Scholar 

  • Lan F, Nottke AC, Shi Y (2008) Mechanisms involved in the regulation of histone lysine demethylases. Curr Opin Cell Biol 20:316–325

    PubMed  CAS  Google Scholar 

  • Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69:905–914

    PubMed  CAS  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    PubMed  CAS  Google Scholar 

  • Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–20780

    PubMed  CAS  Google Scholar 

  • Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:296–301

    PubMed  CAS  Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot 94:481–495

    PubMed  CAS  Google Scholar 

  • Makarevich G, Leroy O, Akinci U, Schubert D, Clarenz O, Goodrich J, Grossniklaus U, Kohler C (2006) Different polycomb group complexes regulate common target genes in Arabidopsis. EMBO Rep 7:947–952

    PubMed  CAS  Google Scholar 

  • Malagnac F, Bartee L, Bender J (2002) Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J 21:6842–6852

    PubMed  CAS  Google Scholar 

  • Marushige K, Ling V, Dixon GH (1969) Phosphorylation of chromosomal basic proteins in maturing trout testis. J Biol Chem 244:5953–5958

    PubMed  CAS  Google Scholar 

  • Meehan RR, Lewis JD, McKay S, Kleiner EL, Bird AP (1989) Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58:499–507

    PubMed  CAS  Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725

    PubMed  CAS  Google Scholar 

  • Mosquna A, Katz A, Decker EL, Rensing SA, Reski R, Ohad N (2009) Regulation of stem cell maintenance by the polycomb protein FIE has been conserved during land plant evolution. Development 136:2433–2444

    PubMed  CAS  Google Scholar 

  • Muller HJ (1930) Types of visible variations induced by X-rays in Drosophila. J Genet 22:299–334

    Google Scholar 

  • Muller J, Verrijzer P (2009) Biochemical mechanisms of gene regulation by polycomb group protein complexes. Curr Opin Genet Dev 19:150–158

    PubMed  Google Scholar 

  • Murray K (1964) The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3:10–15

    PubMed  CAS  Google Scholar 

  • Nan X, Meehan RR, Bird A (1993) Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 21:4886–4892

    PubMed  CAS  Google Scholar 

  • Oh S, Park S, van Nocker S (2008) Genic and global functions for Paf1C in chromatin modification and gene expression in Arabidopsis. PLoS Genet 4:e1000077

    PubMed  Google Scholar 

  • Ohad N, Margossian L, Hsu YC, Williams C, Repetti P, Fischer RL (1996) A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci USA 93:5319–5324

    PubMed  CAS  Google Scholar 

  • Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, Fischer RL (1999) Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11:407–416

    PubMed  CAS  Google Scholar 

  • Papp B, Muller J (2006) Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev 20:2041–2054

    PubMed  CAS  Google Scholar 

  • Pien S, Grossniklaus U (2007) Polycomb group and trithorax group proteins in Arabidopsis. Biochim Biophys Acta 1769:375–382

    PubMed  CAS  Google Scholar 

  • Prokhortchouk A, Hendrich B, Jørgensen H, Ruzov A, Wilm M, Georgiev G, Bird A, Prokhortchouk E (2001) The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev 15:1613–1618

    PubMed  CAS  Google Scholar 

  • Rajakumara E, Law JA, Simanshu DK, Voigt P, Johnson LM, Reinberg D, Patel DJ, Jacobsen SE (2011) A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo. Genes Dev 25:137–152

    PubMed  CAS  Google Scholar 

  • Rasmussen PS, Murray K, Luck JM (1962) On the complexity of calf thymus histone. Biochemistry 1:79–89

    PubMed  CAS  Google Scholar 

  • Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599

    PubMed  CAS  Google Scholar 

  • Robertson KD, Jones PA (2000) DNA methylation: past, present and future directions. Carcinogenesis 21:461–467

    PubMed  CAS  Google Scholar 

  • Roudier F, Teixeira FK, Colot V (2009) Chromatin indexing in Arabidopsis: an epigenomic tale of tails and more. Trends Genet 25:511–517

    PubMed  CAS  Google Scholar 

  • Roudier F, Ahmed I, Bérard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L, Giraut L, Després B, Drevensek S, Barneche F, Dèrozier S, Brunaud V, Aubourg S, Schnittger A, Bowler C, Martin-Magniette ML, Robin S, Caboche M, Colot V (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 10:1928–1938

    Google Scholar 

  • Ruiz-Carrillo A, Wangh LJ, Littau VC, Allfrey VG (1974) Changes in histone acetyl content and in nuclear non-histone protein composition of avian erythroid cells at different stages of maturation. J Biol Chem 249:7358–7368

    PubMed  CAS  Google Scholar 

  • Sathe SS, Harte PJ (1995) The Drosophila extra sex combs protein contains WD motifs essential for its function as a repressor of homeotic genes. Mech Dev 52:77–87

    PubMed  CAS  Google Scholar 

  • Scebba F, Bernacchia G, De Bastiani M, Evangelista M, Cantoni RM, Cella R, Locci MT, Pitto L (2003) Arabidopsis MBD proteins show different binding specificities and nuclear localization. Plant Mol Biol 53:715–731

    PubMed  CAS  Google Scholar 

  • Schatlowski N, Creasey K, Goodrich J, Schubert D (2008) Keeping plants in shape: polycomb-group genes and histone methylation. Semin Cell Dev Biol 19:547–553

    PubMed  CAS  Google Scholar 

  • Scheid OM, Afsar K, Paszkowski J (1998) Release of epigenetic gene silencing by trans-acting mutations in Arabidopsis. Proc Natl Acad Sci USA 95:632–637

    Google Scholar 

  • Schotta G, Ebert A, Dorn R, Reuter G (2003) Position-effect variegation and the genetic dissection of chromatin regulation in Drosophila. Semin Cell Dev Biol 14:67–75

    PubMed  CAS  Google Scholar 

  • Schubert D, Primavesi L, Bishopp A, Roberts G, Doonan J, Jenuwein T, Goodrich J (2006) Silencing by plant polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO J 25:4638–4649

    PubMed  CAS  Google Scholar 

  • Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G (2007) Genome regulation by polycomb and trithorax proteins. Cell 128:735–745

    PubMed  CAS  Google Scholar 

  • Schwartz YB, Pirrotta V (2008) Polycomb complexes and epigenetic states. Curr Opin Cell Biol 20:266–273

    PubMed  CAS  Google Scholar 

  • Shao Z, Raible F, Mollaaghababa R, Guyon JR, Wu CT, Bender W, Kingston RE (1999) Stabilization of chromatin structure by PRC1, a polycomb complex. Cell 98:37–46

    PubMed  CAS  Google Scholar 

  • Shapiro HS, Chargaff E (1960) Studies on the nucleotide arrangement in deoxyribonucleic acids IV. Patterns of nucleotide sequence in the deoxyribonucleic acid of rye germ and its fractions. Biochim Biophys Acta 39:68–82

    PubMed  CAS  Google Scholar 

  • Simon RH, Camerini-Otero RD, Felsenfeld G (1978) An octamer of histones H3 and H4 forms a compact complex with DNA of nucleosome size. Nucleic Acids Res 5:4805–4818

    PubMed  CAS  Google Scholar 

  • Springer NM, Kaeppler SM (2005) Evolutionary divergence of monocot and dicot methyl-CpG-binding domain proteins. Plant Physiol 138:92–104

    PubMed  CAS  Google Scholar 

  • Stedman E, Stedman E (1951) The basic proteins of cell nuclei. Philos Trans R Soc Lond B 235:569–595

    Google Scholar 

  • Stein R, Razin A, Cedar H (1982) In vitro methylation of the hamster adenine phosphoribosyltransferase gene inhibits its expression in mouse L cells. Proc Natl Acad Sci USA 79:3418–3422

    PubMed  CAS  Google Scholar 

  • Stock JK, Giadrossi S, Casanova M, Brookes E, Vidal M, Koseki H, Brockdorff N, Fisher AG, Pombo A (2007) Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 9:1428–1435

    PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    PubMed  CAS  Google Scholar 

  • Struhl G (1981) A gene product required for correct initiation of segmental determination in Drosophila. Nature 293:36–41

    PubMed  CAS  Google Scholar 

  • Sung S, Amasino RM (2004) Vernalization and epigenetics: how plants remember winter. Curr Opin Plant Biol 7:4–10

    PubMed  CAS  Google Scholar 

  • Tamaru H, Selker EU (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–283

    PubMed  CAS  Google Scholar 

  • Tamaru H, Zhang X, McMillen D, Singh PB, Nakayama J, Grewal SI, Allis CD, Cheng X, Selker EU (2003) Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat Genet 34:75–79

    PubMed  CAS  Google Scholar 

  • Turck F, Roudier F, Farrona S, Martin-Magniette ML, Guillaume E, Buisine N, Gagnot S, Martienssen RA, Coupland G, Colot V (2007) Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 3:86

    Google Scholar 

  • Unoki M, Nishidate T, Nakamura Y (2004) ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene 23:7601–7610

    PubMed  CAS  Google Scholar 

  • van Holde KE (1989) Chromatin. Springer, Berlin, Germany

    Google Scholar 

  • Vanyushin BF, Ashapkin VV (2011) DNA methylation in higher plants: past, present and future. Biochim Biophys Acta 1809:360–368

    PubMed  CAS  Google Scholar 

  • Vardimon L, Kressmann A, Cedar H, Maechler M, Doerfler W (1982) Expression of a cloned adenovirus gene is inhibited by in vitro methylation. Proc Natl Acad Sci USA 79:1073–1077

    PubMed  CAS  Google Scholar 

  • Vaughn MW, Tanurd Ic M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, Dedhia N, McCombie WR, Agier N, Bulski A, Colot V, Doerge RW, Martienssen RA (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:e174

    PubMed  Google Scholar 

  • Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation deficient mutants. Science 260:1926–1928

    PubMed  CAS  Google Scholar 

  • Wagner I, Capesius I (1981) Determination of 5-methylcytosine from plant DNA by high-performance liquid chromatography. Biochim Biophys Acta 654:52–56

    PubMed  CAS  Google Scholar 

  • Waterborg JH (2011) Plant histone acetylation: in the beginning. Biochim Biophys Acta 1809:353–359

    PubMed  CAS  Google Scholar 

  • Weber H, Ziechmann C, Graessmann A (1990) In vitro DNA methylation inhibits gene expression in transgenic tobacco. EMBO J 9:4409–4415

    PubMed  CAS  Google Scholar 

  • Wienholz BL, Kareta MS, Moarefi AH, Gordon CA, Ginno PA, Chédin F (2010) DNMT3L modulates significant and distinct flanking sequence preference for DNA methylation by DNMT3A and DNMT3B in vivo. PLoS Genet 6:e1001106

    PubMed  Google Scholar 

  • Wierzbicki AT, Cocklin R, Mayampurath A, Lister R, Rowley MJ, Gregory BD, Ecker JR, Tang H, Pikaard CS (2012) Spatial and functional relationships among Pol V-associated loci, Pol IV-dependent siRNAs, and cytosine methylation in the Arabidopsis epigenome. Genes Dev 16:1825–1836

    Google Scholar 

  • Wolffe AP (1992) Chromatin: structure and function. Academic, San Diego, CA

    Google Scholar 

  • Woo HR, Pontes O, Pikaard CS, Richards EJ (2007) VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization. Genes Dev 21:267–277

    PubMed  CAS  Google Scholar 

  • Wyatt GR (1951) Recognition and estimation of 5-methylcytosine in nucleic acids. Biochem J 48:581–584

    PubMed  CAS  Google Scholar 

  • Xu L, Shen WH (2008) Polycomb silencing of KNOX genes confines shoot stem cell niches in Arabidopsis. Curr Biol 18:1966–1971

    PubMed  CAS  Google Scholar 

  • Zemach A, Grafi G (2003) Characterization of Arabidopsis thaliana methyl-CpG-binding domain (MBD) proteins. Plant J 34:565–572

    PubMed  CAS  Google Scholar 

  • Zemach A, Grafi G (2007) Methyl-CpG-binding domain proteins in plants: interpreters of DNA methylation. Trends Plant Sci 12:80–85

    PubMed  CAS  Google Scholar 

  • Zemach A, Li Y, Ben-Meir H, Oliva M, Mosquna A, Kiss V, Avivi Y, Ohad N, Grafi G (2006) Different domains control the localization and mobility of LIKE HETEROCHROMATIN PROTEIN1 in Arabidopsis nuclei. Plant Cell 18:133–145

    PubMed  CAS  Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919

    PubMed  CAS  Google Scholar 

  • Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129

    PubMed  Google Scholar 

Download references

Acknowledgements

N. O. research was supported by the Israel Science Foundation (ISF) No. 767/09, GIF program No. 154/2008 and Korea Israel Program No. 3–8248. G. G. research was supported by ISF grant No. 476/09.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gideon Grafi or Nir Ohad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grafi, G., Ohad, N. (2013). Plant Epigenetics: A Historical Perspective. In: Grafi, G., Ohad, N. (eds) Epigenetic Memory and Control in Plants. Signaling and Communication in Plants, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35227-0_1

Download citation

Publish with us

Policies and ethics