Skip to main content

Extension of the EMMS Model to Gas-Liquid Systems

  • Chapter
  • First Online:
From Multiscale Modeling to Meso-Science

Abstract

The Dual-Bubble-Size (DBS) model is an extension of the energy minimization multiscale (EMMS) approach for gas-liquid systems. The system is resolved into a liquid phase, small bubbles and large bubbles, and is jointly dominated by two movement tendencies; i.e., those of the small and large bubbles. A stability condition is formulated to reflect the compromise between these dominant mechanisms, offering another constraint in addition to mass and momentum conservation equations. The DBS model can theoretically predict the regime transition in bubble columns and physically explain the macro-scale evolution of flow structures through the jump change in the global minimum of the micro-scale energy dissipation changing from one point to another within the model space of the structure parameters. The DBS model is found to be an intrinsic model for gas-liquid systems in contrast to the models for single, triple, and multiple classes of bubble. A new model for the ratio of drag coefficient to bubble diameter, that is, the EMMS drag, is then integrated into the Eulerian-Eulerian computational fluid dynamics (CFD) models. The resulting improved prediction demonstrates the ability of the DBS model to reveal the multiscale nature and complexity of gas-liquid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C D :

Drag coefficient for a bubble in a swarm, dimensionless

C D0 :

Drag coefficient for a bubble in a quiescent liquid, dimensionless

C D,p :

Drag coefficient for a particle in multi-particle systems, dimensionless

c f :

Coefficient of surface area increase, \( c_{\text{f}} = f_{\rm BV}^{2/3} + (1 - f_{\rm BV} )^{2/3} - 1 \), dimensionless

d b :

Bubble diameter, m

d L :

Bubble diameter of large bubbles, m

d S :

Bubble diameter of small bubbles, m

Eo :

Eötvos number, dimensionless

f b :

Volume fraction of gas phase, dimensionless

f L :

Volume fraction of large bubbles, dimensionless

f S :

Volume fraction of small bubbles, dimensionless

f BV :

Breakup ratio of daughter bubble to its mother bubble, dimensionless

g :

Gravitational acceleration, m/s2

N break :

Rate of energy consumption due to bubble breakage and coalescence per unit mass, m2/s3

N surf :

Rate of energy dissipation due to bubble oscillation per unit mass, m2/s3

N turb :

Rate of energy dissipation in turbulent liquid phase per unit mass, m2/s3

N st :

Rate of energy dissipation for suspending and transporting particles per unit mass, m2/s3

N T :

Total rate of energy dissipation

P b :

Bubble breakup probability, dimensionless

U g :

Superficial gas velocity, m/s

U g,L :

Superficial gas velocity for large bubbles, m/s

U g,S :

Superficial gas velocity for small bubbles, m/s

U l :

Superficial liquid velocity, m/s

V rel :

Relative velocity between gas and liquid, m/s

ε l :

Volume fraction of liquid, dimensionless

λ :

Character size of eddy, m

μ :

Viscosity, Pa·s

ρ:

Density, kg/m3

σ :

Surface tension, N/m

ω :

Collision frequency, 1/s

b :

Bubble

g :

Gas

l :

Liquid

L :

Large bubble

p :

Particle

S :

Small bubble

References

  • Bi HT, Grace JR (1996) Regime transitions: analogy between gas-liquid co-current upward flow and gas-solids upward transport. Int J Multiph Flow 22:1–19

    Article  MATH  Google Scholar 

  • Camarasa E, Vial C, Poncin S, Wild G, Midoux N, Bouillard J (1999) Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column. Chem Eng Process 38(4–6):329–344

    Google Scholar 

  • Chen J, Yang N, Ge W, Li J (2009a) Computational fluid dynamics simulation of regime transition in bubble columns incorporating the dual-bubble-size model. Ind Eng Chem Res 48(17):8172–8179

    Article  Google Scholar 

  • Chen J, Yang N, Ge W, Li J (2009b) Modeling of regime transition in bubble columns with stability condition. Ind Eng Chem Res 48(1):290–301

    Article  Google Scholar 

  • Chen J, Yang N, Ge W, Li J (2012) Stability-driven structure evolution: exploring the intrinsic similarity between gas–solid and gas-liquid systems. Chin J Chem Eng 20(1):167–177

    Article  Google Scholar 

  • Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles, vol 3. Academic, New York

    Google Scholar 

  • De Swart JWA, van Vliet RE, Krishna R (1996) Size, structure and dynamics of “large” bubbles in a two-dimensional slurry bubble column. Chem Eng Sci 51(20):4619–4629

    Article  Google Scholar 

  • Eissa SH, Schugerl K (1975) Holdup and backmixing investigations in cocurrent and countercurrent bubble columns. Chem Eng Sci 30(10):1251–1256

    Article  Google Scholar 

  • Ellenberger J, Krishna R (1994) A unified approach to the scale-up of gas-solid fluidized bed and gas-liquid bubble column reactors. Chem Eng Sci 49(24B):5391–5411

    Google Scholar 

  • Fan LS, Tsuchiya K (1990) Bubble wake dynamics in liquids and liquid–solid suspensions. Butterworth–Heinemann, Stoneham

    Google Scholar 

  • Ge W, Li JH (2002) Physical mapping of fluidization regimes—the EMMS approach. Chem Eng Sci 57(18):3993–4004

    Article  Google Scholar 

  • Ge W, Chen F, Gao J, Gao S, Huang J, Liu X, Ren Y, Sun Q, Wang L, Wang W, Yang N, Zhang J, Zhao H, Zhou G, Li J (2007) Analytical multi-scale method for multi-phase complex systems in process engineering—Bridging reductionism and holism. Chem Eng Sci 62(13):3346–3377

    Article  Google Scholar 

  • Grace JR, Wairegi T, Nguyen TH (1976) Shapes and velocities of single drops and bubbles moving freely through immiscible liquids. Trans Inst Chem Eng 54(3):167–173

    Google Scholar 

  • Harteveld WK (2005b) Bubble columns: structure or stability? Ph.D. Thesis, Delft University of Technology, The Netherlands

    Google Scholar 

  • Harteveld WK, Mudde RF, Van den Akker HEA (2005) Estimation of turbulence power spectra for bubbly flows from laser Doppler Anemometry signals. Chem Eng Sci 60(22):6160–6168

    Article  Google Scholar 

  • Hills J (1974) Radial non-uniformity of velocity and voidage in a bubble column. Trans Inst Chem Eng 52(1):9

    Google Scholar 

  • Joshi JB, Deshpande NS, Dinkar M, Phanikumar DV (2001) Hydrodynamic stability of multiphase reactors. Adv Chem Eng 26:1–130

    Article  Google Scholar 

  • Kostoglou M, Karabelas AJ (2005) Toward a unified framework for the derivation of breakage functions based on the statistical theory of turbulence. Chem Eng Sci 60(23):6584–6595

    Article  Google Scholar 

  • Krishna R, Urseanu MI, van Baten JM, Ellenberger J (1999) Influence of scale on the hydrodynamics of bubble columns operating in the churn-turbulent regime: experiments vs. Eulerian simulations. Chem Eng Sci 54(21):4903–4911

    Article  Google Scholar 

  • Letzel HM, Schouten JC, Krishna R, van den Bleek CM (1997) Characterization of regimes and regime transitions in bubble columns by chaos analysis of pressure signals. Chem Eng Sci 52(24):4447–4459

    Article  Google Scholar 

  • Li J, Kwauk M (1994) Particle-fluid two-phase flow: the energy-minimization multi-scale method. Metallurgical Industry Press, Beijing

    Google Scholar 

  • Li J, Kwauk M (2003) Exploring complex systems in chemical engineering—the multi-scale methodology. Chem Eng Sci 58(3–6):521–535

    Google Scholar 

  • Li J, Cheng C, Zhang Z, Yuan J, Nemet A, Fett FN (1999) The EMMS model—its application, development and updated concepts. Chem Eng Sci 54(22):5409–5425

    Article  Google Scholar 

  • Li J, Ge W, Zhang J, Kwauk M (2005) Multi-scale compromise and multi-level correlation in complex systems. Chem Eng Res Des 83(A6):574–582

    Article  Google Scholar 

  • Li J, Ge W, Wang W, Yang N (2010) Focusing on the meso-scales of multi-scale phenomena—In search for a new paradigm in chemical engineering. Particuology 8(6):634–639

    Article  Google Scholar 

  • Lucas D, Prasser HM, Manera A (2005) Influence of the lift force on the stability of a bubble column. Chem Eng Sci 60(13):3609–3619

    Article  Google Scholar 

  • Luo H, Svendsen HF (1996) Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J 42(5):1225–1233

    Article  Google Scholar 

  • Magnaudet J, Eames I (2000) The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu Rev Fluid Mech 32(1):659–708

    Article  MathSciNet  Google Scholar 

  • Monahan SM, Fox RO (2007) Linear stability analysis of a two-fluid model for air-water bubble columns. Chem Eng Sci 62(12):3159–3177

    Article  Google Scholar 

  • Monahan SM, Vitankar VS, Fox RO (2005) CFD predictions for flow-regime transitions in bubble columns. AIChE J 51(7):1897–1923

    Article  Google Scholar 

  • Mudde RF (2005) Gravity-driven bubbly flows. In: Annual review of fluid mechanics, vol 37. Annual review of fluid mechanics, pp 393–423

    Google Scholar 

  • Mudde RF, Harteveld WK, van den Akker HEA (2009) Uniform flow in bubble columns. Ind Eng Chem Res 48(1):148–158

    Article  Google Scholar 

  • Olmos E, Gentric C, Midoux N (2003) Numerical description of flow regime transitions in bubble column reactors by a multiple gas phase model. Chem Eng Sci 58(10):2113–2121

    Article  Google Scholar 

  • Ruthiya KC, Chilekar VP, Warnier MJF, van der Schaaf J, Kuster BFM, Schouten JC, van Ommen JR (2005) Detecting regime transitions in slurry bubble columns using pressure time series. AIChE J 51(7):1951–1965

    Article  Google Scholar 

  • Ruzicka MC, Zahradnik J, Drahos J, Thomas NH (2001) Homogeneous–heterogeneous regime transition in bubble columns. Chem Eng Sci 56(15):4609–4626

    Article  Google Scholar 

  • Ruzicka MC, Drahos J, Mena PC, Teixeira JA (2003) Effect of viscosity on homogeneous-heterogeneous flow regime transition in bubble columns. Chem Eng J 96(1–3):15–22

    Article  Google Scholar 

  • Ruzicka MC, Vecer MM, Orvalho S, Drahos J (2008) Effect of surfactant on homogeneous regime stability in bubble column. Chem Eng Sci 63(4):951–967

    Article  Google Scholar 

  • Shaikh A, Al-Dahhan MH (2007) A review on flow regime transition in bubble columns. Int J Chem Reactor Eng 57:1--68

    Google Scholar 

  • Taitel Y, Bornea D, Dukler AE (1980) Modeling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AIChE J 26(3):345–354

    Article  Google Scholar 

  • Tomiyama A (1998) Struggle with computational bubble dynamics. Multiph Sci Technol 10(4):369–405

    Google Scholar 

  • Wang TF, Wang JF, Jin Y (2003) A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow. Chem Eng Sci 58(20):4629–4637

    Article  Google Scholar 

  • Wang TF, Wang JF, Jin Y (2005) Theoretical prediction of flow regime transition in bubble columns by the population balance model. Chem Eng Sci 60(22):6199–6209

    Article  Google Scholar 

  • Wang Y, Xiao Q, Yang N, Li J (2012) In-depth exploration of the dual-bubble-size model for bubble columns. Ind Eng Chem Res 51(4):2077–2083

    Article  Google Scholar 

  • White FM (1974) Viscous fluid flow. McGraw-Hill, New York

    MATH  Google Scholar 

  • Wu Z, Yang N, Li J (2010) Eulerian simulation incorporating a dual-bubble-size drag model for a bubble column. Chemeca 2010: engineering at the edge. Hilton Adelaide, p 2649, 26–29 Sept 2010

    Google Scholar 

  • Xiao Q, Yang N, Li JH (2013) Stability-constrained multi-fluid CFD models for gas-liquid flow in bubble columns. Chem Eng Sci. doi:10.1016/j.ces.2013.02.027

  • Yang N, Chen JH, Zhao H, Ge W, Li JH (2007) Explorations on the multi-scale flow structure and stability condition in bubble columns. Chem Eng Sci 62(24):6978–6991

    Article  Google Scholar 

  • Yang N, Chen JH, Ge W, Li JH (2010) A conceptual model for analyzing the stability condition and regime transition in bubble columns. Chem Eng Sci 65(1):517–526

    Article  Google Scholar 

  • Yang N, Wu ZY, Chen JH, Wang YH, Li JH (2011) Multi-scale analysis of gas-liquid interaction and CFD simulation of gas-liquid flow in bubble columns. Chem Eng Sci 66(14):3212–3222

    Article  Google Scholar 

  • Zahradnik J, Fialova M (1996) The effect of bubbling regime on gas and liquid phase mixing in bubble column reactors. Chem Eng Sci 51(10):2491–2500

    Article  Google Scholar 

  • Zahradnik J, Fialova M, Ruzicka M, Drahos J, Kastanek F, Thomas NH (1997) Duality of the gas-liquid flow regimes in bubble column reactors. Chem Eng Sci 52(21–22):3811–3826

    Google Scholar 

  • Zakrzewski W, Lippert J, Lubbert A, Schugerl K (1981) Investigation of the structure of 2-phase flows in bubble column bioreactors. 6. Turbulence structures. Eur J Appl Microbiol Biotechnol 12(3):150–156

    Article  Google Scholar 

  • Zhang JP, Grace J, Epstein N, Lim K (1997) Flow regime identification in gas-liquid flow and three-phase fluidized beds. Chem Eng Sci 52(21):3979–3992

    Article  Google Scholar 

  • Zhang D, Deen NG, Kuipers JAM (2009) Euler–Euler modeling of flow, mass transfer, and chemical reaction in a bubble column. Ind Eng Chem Res 48(1):47–57

    Article  Google Scholar 

  • Zhao H (2006) Multi-scale modeling of gas-liquid (slurry) reactors. Unpublished doctoral dissertation. Chinese Academy of Sciences

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghai Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, J. et al. (2013). Extension of the EMMS Model to Gas-Liquid Systems. In: From Multiscale Modeling to Meso-Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35189-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35189-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35188-4

  • Online ISBN: 978-3-642-35189-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics