Skip to main content

Meso-Scale Modeling: The EMMS Model for Gas-Solid Systems

  • Chapter
  • First Online:
From Multiscale Modeling to Meso-Science

Abstract

This chapter introduces the EMMS model for gas-solid two-phase flow and the motive for this series of work. The EMMS model focuses on the meso-scale phenomenon of particle clustering, correlating it to the micro-scale of single particles and the macro-scale of the vessel operating conditions, material properties, and boundary conditions by analyzing the compromise between dominant mechanisms to define the meso-scale stability condition. The EMMS model can be solved for the eight parameters that describe the meso-scale structure and capture the so-called choking and drag-reduction phenomena in gas-solid fluidization systems, and further enables the intrinsic regime, operation diagram and overall fluid dynamics of systems to be determined. This chapter provides a solid basis to integrate the EMMS model with computational fluid dynamics (CFD) simulations and develop the EMMS paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

Acceleration, m/s2

C b :

Coefficient of added mass force, -

C D :

Drag coefficient for particles, -

C D0 :

Drag coefficient for a single particle, -

d :

Diameter, m

F :

Gas-solid interaction, N

f :

Volume fraction (of dense phase), -

F i (X) :

Conservation equation, -

g :

Gravity acceleration, m/s2

G s :

Solids flow rate, kg/(m2·s)

H :

Solids bed height, m

I :

Solids inventory, kg

K :

Proportional factor, -

K * :

Saturation carrying capacity, kg/(m2·s)

m :

Particle or cluster number in unit volume, m-3

N :

Rate of energy dissipation per unit mass of solids, m2/s3

P :

Pressure, kPa

Q :

Volume flow rate, m3/s

r :

Radial coordinate, m

R :

Radius, m

Re:

Reynolds number, -

t :

Time, s

U :

Superficial velocity, m/s

u :

Velocity, m/s

W :

Energy consumption with respect to unit volume, J/m3 s

z :

Axial coordinate, m

δ b :

Bubble holdup, -

ν :

Kinematic viscosity, m2/s

ρ :

Density, kg/m3

σ :

Variation of local solids concentration fluctuation, -

ε:

Voidage, -

μ:

Viscosity, Pa·s

*:

Top dilute region

a:

Bottom dense region

b:

Bubble

c:

Dense phase

cl:

Cluster

d:

Dissipation

e:

Emulsion

f:

Dilute phase, fluid

g:

Gas

i:

Interface

imp:

Imposed pressure

max:

Maximum

mb:

Minimum bubbling

mf:

Minimum fluidization

min:

Minimum

p:

Particle

pt:

Value for choking point

s:

Suspension, slip

T:

Total

t:

Transport, terminal

uni:

Uniform

References

  • Bader R, Findlay J, Knowlton TM (1988) Gas/solid flow patterns in a 30.5 cm diameter circulating fluidized bed. In: Basu P, Large JF (eds) Circulating fluidized bed (CFB), vol 2. Pergamon Press, New York, pp 123–137

    Google Scholar 

  • Chavan VV (1984) Physical principles in suspension and emulsion processing. In: Mujumdar AS, Mashelkar RA (eds) Advances in transport peocesses. Wiley, New York, pp 1–6

    Google Scholar 

  • Cheng CJ (2007) Multi-scale modeling of the axial heterogeneous structure in circulating fluidized beds. Ph.D, Institute of Process Engineering, Chinese Academy of Sciences

    Google Scholar 

  • Cheng CL (2001) Energy minimization multi-scale core-annulus model for CFBs. Ph.D, Institute Process of Engineering, Chinese Academy of Sciences

    Google Scholar 

  • Cui H, Li J, Kwauk M, An H, Chen M, Ma Z, Wu G (2000) Dynamic behaviors of heterogeneous flow structure in gas-solid fluidization. Powder Technol 112(1–2):7–23

    Article  Google Scholar 

  • Flemmer RLC, Banks CL (1986) On the drag coefficient of a sphere. Powder Technol 48:217–221

    Article  Google Scholar 

  • Ge W, Chen F, Gao J, Gao S, Huang J, Liu X, Ren Y, Sun Q, Wang L, Wang W, Yang N, Zhang J, Zhao H, Zhou G, Li J (2007) Analytical multi-scale method for multi-phase complex systems in process engineering–bridging reductionism and holism. Chem Eng Sci 62(13):3346–3377

    Article  Google Scholar 

  • Ge W, Li J (2002) Physical mapping of fluidization regimes—the EMMS approach. Chem Eng Sci 57:3993–4004

    Article  Google Scholar 

  • Ge W, Wang W, Yang N, Li JH, Kwauk M, Chen FG, Chen JH, Fang XJ, Guo L, He XF, Liu XH, Liu YN, Lu BN, Wang J, Wang JW, Wang LM, Wang XW, Xiong QG, Xu M, Deng LJ, Han YS, Hou CF, Hua LN, Huang WL, Li B, Li CX, Li F, Ren Y, Xu J, Zhang N, Zhang Y, Zhou GF, Zhou GZ (2011) Meso-scale oriented simulation towards virtual process engineering (VPE)-the EMMS paradigm. Chem Eng Sci 66(19):4426–4458

    Article  Google Scholar 

  • Gidaspow D (1994) Multiphase flow and fluidization: continuum and kinetic theory description. Academic, New York

    Google Scholar 

  • Helland E, Occelli R, Tadrist L (2000) Numerical study of cluster formation in a gas-particle circulating fluidized bed. Powder Technol 110:210–221

    Article  Google Scholar 

  • Kwauk M, Li J (1996) Fluidization regimes. Powder Technol 87(3):193–202

    Article  Google Scholar 

  • Lanneau KP (1960) Gas solid contacting in fluidized beds. Trans Inst Chem Engrs 38:125

    Google Scholar 

  • Li J (1987) Multiscale-modeling and method of energy minimization for particle-fluid two-phase flow. Ph.D, Institute of Chemical Metallurgy, Chinese Academy of Sciences

    Google Scholar 

  • Li J, Chen A, Yan Z, Xu G, Zhang X (1993) Particle-fluid contacting in circulating fluidized beds. In: Avidan AA (ed) Preprint of the fourth international conference on circulating fluidized beds, Hidden Valley, pp 49–54

    Google Scholar 

  • Li J, Cheng C, Zhang Z, Yuan J, Nemet A, Fett FN (1999) The EMMS model and its application, development and updated concepts. Chem Eng Sci 54:5409–5425

    Article  Google Scholar 

  • Li J, Kwauk M (1994) Particle-fluid two-phase flow: the energy-minimization multi-scale method. Metallurgical Industry Press, Beijing

    Google Scholar 

  • Li J, Kwauk M (2001) Multi-scale nature of complex fluid-particles systems. Ind Eng Chem Res 40:4227–4237

    Article  Google Scholar 

  • Li J, Kwauk M (2003) Exploring complex systems in chemical engineering: the multi-scale methodology. Chem Eng Sci 58:521–535

    Article  Google Scholar 

  • Li J, Reh L, Kwauk M (1990) Application of the principle of energy minimization to fluid-dynamics of circulating fluidized bed. In: Basu P, Horio M, Hasatani M (eds) Circulating fluidized bed technology III. Pergamon Press, Oxford, pp 105–111

    Google Scholar 

  • Li J, Reh L, Kwauk M (1992) Role of energy minimization in gas-solid fluidization. In: Potter OE, Nicklin DJ (eds) Fluidization VII. Engineering Foundation, New York, pp 83–91

    Google Scholar 

  • Li J, Tung Y, Kwauk M (1988a) Axial voidage profiles of fast fluidized beds in different operating regions. In: Basu P, Large JF (eds) The 2nd international conference on circulating fluidized beds. Pergamon Press, Oxford, pp 193–203

    Google Scholar 

  • Li J, Tung Y, Kwauk M (1988b) Multi-scale modeling and method of energy minimization in particle-fluid two-phase flow. In: Basu P, Large JF (eds) Circulating fluidized bed technology II. Pergamon Press, New York, pp 89–103

    Google Scholar 

  • Li J, Zhang J, Ge W, Liu X (2004) Multi-scale methodology for complex systems. Chem Eng Sci 59:1687–1700

    Article  Google Scholar 

  • Li JH, Wen LX, Qian GH, Cui HP, Kwauk M, Schouten JC, Van Den Bleek CM (1996) Structure heterogeneity, regime multiplicity and nonlinear behavior in particle-fluid systems. Chem Eng Sci 51(11):2693–2698

    Article  Google Scholar 

  • Li Y, Kwauk M (1980) The dynamics of fast fluidization. In: Grace JR, Matsen JM (eds) Fluidization. Pergamon Press, New York, pp 537–544

    Chapter  Google Scholar 

  • Liu X, Gao S, Li J (2005) Characterizing particle clustering behavior by PDPA measurement for dilute gas-solid flow. Chem Eng J 108(3):193–202

    Article  Google Scholar 

  • Liu X, Gao S, Song W, Li J (2006) Effect of particle acceleration/deceleration on particle clustering behavior in dilute gas-solid flow. Chem Eng Sci 61:7087–7095

    Article  Google Scholar 

  • Liu XH, Li JH, Ge W (2011) A method to fast predict macro hydrodynamics of complex fluidization systems. China Patent 201110122298.X

    Google Scholar 

  • Lu BN, Zhang N, Wang W, Li JH (2012) Extending EMMS-based models to CFB boiler applications. Particulogy 10(6):663--671

    Google Scholar 

  • Matsen JM (1982) Mechanics of choking and entrainment. Powder Technol 32(1):21–33

    Article  MathSciNet  Google Scholar 

  • Perry RH, Green DW (eds) (2007) Perry’s chemical engineers’ handbook. Mcgraw-Hill, New York

    Google Scholar 

  • Reh L (1971) Fluidized bed processing. Chem Eng Prog 67(2):58–64

    Google Scholar 

  • Reh L, Li JH (1991) Measurement of voidage in fluidized beds by optical probes. In: Basu P, Horio M, Hasatani M (eds) Circulating fluidized bed technology III. Pergamon Press, New York, pp 105–113

    Google Scholar 

  • Romero JB, Johanson LN (1962) Factors affecting fluidized bed quality. Chem Eng Prog Symp Series 58:28–34

    Google Scholar 

  • Shi ZS, Wang W, Li JH (2011) A bubble-based EMMS model for gas-solid bubbling fluidization. Chem Eng Sci 66(22):5541–5555

    Article  Google Scholar 

  • Wang W, Li J (2007) Simulation of gas-solid two-phase flow by a multi-scale CFD approach: extension of the EMMS model to the sub-grid scale level. Chem Eng Sci 62:208–231

    Article  Google Scholar 

  • Wang W, Lu B, Dong W, Li J (2008) Multi-scale CFD simulation of operating diagram for gas-solid risers. Can J Chem Eng 86(3):448–457

    Article  Google Scholar 

  • Wen CY, Yu YH (1966) Mechanics of fluidization. Chem Eng Prog Symp Series 62:100–111

    Google Scholar 

  • Wilhelm RH, Kwauk M (1948) Fluidization of solid particles. Chem Eng Prog 44:201–207

    Google Scholar 

  • Xu G, Li J (1998) Analytical solution of the energy-minimization multi-scale model for gas-solid two-phase flow. Chem Eng Sci 53(7):1349–1366

    Article  Google Scholar 

  • Yang N, Wang W, Ge W, Li J (2003) CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient. Chem Eng J 96:71–80

    Article  Google Scholar 

  • Yerushalmi J, Turner DH, Squires AM (1976) The fast fluidized bed. Ind Eng Chem Process Des Devel 15:47–53

    Article  Google Scholar 

  • Zhang DZ, Vanderheyden WB (2002) The effects of mesoscopic structures on the macroscopic momentum equations for two-phase flows. Int J Multiph Flow 28:805–822

    Article  MATH  Google Scholar 

  • Zhang J, Ge W, Li J (2005) Simulation of heterogeneous structures and analysis of energy consumption in particle-fluid systems with pseudo-particle modeling. Chem Eng Sci 60(11):3091–3099

    Article  Google Scholar 

  • Zhang N, Lu B, Wang W, Li J (2008) Virtual experimentation through 3D full-loop simulation of a circulating fluidized bed. Particuology 6(6):529–539

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghai Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, J. et al. (2013). Meso-Scale Modeling: The EMMS Model for Gas-Solid Systems. In: From Multiscale Modeling to Meso-Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35189-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35189-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35188-4

  • Online ISBN: 978-3-642-35189-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics