Skip to main content

Characterization Methods

  • Chapter
  • First Online:
Surface Patterning with Colloidal Monolayers

Part of the book series: Springer Theses ((Springer Theses))

  • 806 Accesses

Abstract

Atomic force microscopy [1] (AFM) is a powerful tool to image and characterize the topography of a surface. In contrast to optical imaging methods, the atomic force microscope is not limited by the diffraction limit and imaging with sub-nanometer resolution is feasible. Additionally, the atomic force microscope provides images with exact dimensions as the contrast purely results from height differences of the sample

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig, G., Quate, C. F., Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56, 930–933.

    Google Scholar 

  2. Butt, H. J., Graf, K., Kappl, M. (2006). Physics and Chemistry of Interfaces. Weinheim: Wiley.

    Google Scholar 

  3. Greenfield, S., Berry, C. T., Jones, I. L. (1964). High-pressure plasmas as spectroscopic emission sources. Analyst, 89, 713–720

    Google Scholar 

  4. Perret, D., Newman, M. E., Negre, J. C., Chen, Y. W., Buffle, J. (1994). Submicron particles in the rhine river. 1. Physicochemical characterization. Water Res, 28, 91–106.

    Google Scholar 

  5. Itoh, A., Nagasawa, T., Zhu, Y. B., Lee, K. H., Fujimori, E., Haraguchi, H. (2004). Distributions of major-to-ultratrace elements among the particulate and dissolved fractions in natural water as studied by icp-aes and icp-ms after sequential fractionation. Analytical Sciences, 20, 29–36.

    Google Scholar 

  6. Ranville, J. F., Chittleborough, D. J., Shanks, F., Morrison, R. J. S., Harris, T., Doss, F., Beckett, R. (1999). Development of sedimentation field-flow fractionation-inductively coupled plasma mass-spectrometry for the characterization of environmental colloids. Analytica Chimica Acta, 381, 315–329.

    Google Scholar 

  7. Olesik, J. W. (1991). Elemental analysis using icp-oes and icp ms—an evaluation and assessment of remaining problems. Analytical Chemistry, 63, A12–A21.

    Google Scholar 

  8. Nölte, J. (2002). ICP Emission Spectrometry. Weinheim: Wiley.

    Google Scholar 

  9. Wendt, R. H., Fassel, V. A. (1965). Induction-coupled plasma spectrometric excitation source. Analytical Chemistry, 37, 920–922.

    Google Scholar 

  10. Degueldre, C., Favarger, P. Y., Wold, S. (2006). Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode. Analytica Chimica Acta, 555, 263–268.

    Google Scholar 

  11. Scheffer, A., Engelhard, C., Sperling, M., Buscher, W. (2008). Icp-ms as a new tool for the determination of gold nanoparticles in bioanalytical applications. Analytical and Bioanalytical Chemistry, 390, 249–252.

    Google Scholar 

  12. Degueldre, C., Favarger, P. Y., Bitea, C. (2004). Zirconia colloid analysis by single particle inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 518, 137–142.

    Google Scholar 

  13. Farinas, J. C., Moreno, R., Mermet, J. M. (1994). Effect of colloidal stability of ceramic suspensions on nebulization of slurries for inductively-coupled plasma-atomic emission-spectrometry. Analytical Atomic Spectrometry, 9, 841–849.

    Google Scholar 

  14. Vancaeyzeele, C., Ornatsky, O., Baranov, V., Shen, L., Abdelrahman, A., Winnik, M. A. (2007). Lanthanide-containing polymer nanoparticles for biological tagging applications: Nonspecific endocytosis and cell adhesion. Journal of the American Chemical Society, 129, 13653–13660.

    Google Scholar 

  15. Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. II. Liquids. Journal of the American Chemical Society, 39, 1848–1906.

    Google Scholar 

  16. Blodgett, K. B. (1934). Monomolecular films of fatty acids on glass. Journal of the American Chemical Society, 56, 495–495.

    Google Scholar 

  17. Blodgett, K. B. (1935). Films built by depositing successive monomolecular layers on a solid surface. Journal of the American Chemical Society, 57, 1007–1022.

    Google Scholar 

  18. Langmuir, I., Schaefer, V. J., Wrinch, D. M, (1937). Properties of built-up protein films. Science, 85, 76–80.

    Google Scholar 

  19. Knoll, M Z. (1935). Charge potential and secondary emission from bodies irradiated by electrons. Technical Physics, 16 36, 467; 861–475; 869.

    Google Scholar 

  20. Goldstein, J. I., Newbury, D. E., Echlin, P., KJoy, D. C., Romig, A. D., Lymann, A. E., Fiori, C., Lifshin, E. (1992). Scanning electron microscopy and x-ray microanalysis. New York: Plenum Press.

    Google Scholar 

  21. Vonnegut, B. (1942). Rotating bubble method for the determination of surface and interfacial tensions. Review of Scientific Instruments, 13, 6–9.

    Google Scholar 

  22. Couper, A., Newton, R., Nunn, C. (1983). A simple derivation of vonnegut equation for the determination of interfacial-tension by the spinning drop technique. Colloid and Polymer Science, 261, 371–372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Vogel .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogel, N. (2012). Characterization Methods. In: Surface Patterning with Colloidal Monolayers. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35133-4_4

Download citation

Publish with us

Policies and ethics