Skip to main content

Abstract

Acute kidney injury (AKI) is a major complication of critical illness [1] occurring in 30 to 40 % of all critically ill patients and in its severe form requires renal replacement therapy (RRT), in approximately 5 % of patients [2]. AKI has been shown to be an independent predictor for mortality [3] and is associated with invasive therapy and substantial costs [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uchino S, Kellum JA, Bellomo R et al (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294:813–818

    Article  PubMed  CAS  Google Scholar 

  2. Bagshaw SM, George C, Dinu I, Bellomo R (2008) A multi-centre evaluation of the RIFLE criteria for early acute kidney injury in critically ill patients. Nephrol Dial Transplant 23:1203–1210

    Article  PubMed  Google Scholar 

  3. Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J (1998) Independent association between acute renal failure and mortality following cardiac surgery. Am J Med 104:343–348

    Article  PubMed  CAS  Google Scholar 

  4. Parikh A, Shaw A (2012) The economics of renal failure and kidney disease in critically ill patients. Crit Care Clin 28:99–111

    Article  PubMed  Google Scholar 

  5. Bywaters EG, Beall D (1941) Crush injuries with impairment of renal function. BMJ 1:427–432

    Article  PubMed  CAS  Google Scholar 

  6. Darmady EM (1947) Renal anoxia and the traumatic uraemia syndrome. Br J Surg 34:262–271

    Article  PubMed  CAS  Google Scholar 

  7. Schrier RW, Wang W (2004) Acute renal failure and sepsis. N Engl J Med 2004 351:159–169

    Article  CAS  Google Scholar 

  8. Prowle JR, Ishikawa K, May CN, Bellomo R (2009) Renal blood flow during acute renal failure in man. Blood Purif 28:216–225

    Article  PubMed  Google Scholar 

  9. Ishikawa K, Calzavacca P, Bellomo R, Bailey M, May CN (2012) Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis. Crit Care Med 40:2368–2375

    Article  PubMed  CAS  Google Scholar 

  10. Morimatsu H, Ishikawa K, May CN, Bailey M, Bellomo R (2012) The systemic and regional hemodynamic effects of phenylephrine in sheep under normal conditions and during early hyperdynamic sepsis. Anesth Analg 115:330–342

    Article  PubMed  CAS  Google Scholar 

  11. O’Connor PM, Evans RG (2010) Structural antioxidant defense mechanisms in the mammalian and nonmammalian kidney: different solutions to the same problem? Am J Physiol Reg Integ Comp Physiol 299:R723–727

    Article  Google Scholar 

  12. Rudolph AM, Heymann MA (1967) Validation of the antipyrine method for measuring fetal umbilical blood flow. Circ Res 21:185–190

    Article  PubMed  CAS  Google Scholar 

  13. McDevitt DG, Nies AS (1976) Simultaneous measurement of cardiac output and its distribution with microspheres in the rat. Cardiovasc Res 10:494–498

    Article  PubMed  CAS  Google Scholar 

  14. Mendell PL, Hollenberg NK (1971) Cardiac output distribution in the rat: comparison of rubidium and microsphere methods. Am J Physiol 221:1617–1620

    PubMed  CAS  Google Scholar 

  15. Prinzen FW, Bassingthwaighte JB (2000) Blood flow distributions by microsphere deposition methods. Cardiovasc Res 45:13–21

    Article  PubMed  CAS  Google Scholar 

  16. Leivestad T, Brodwall EK, Simonsen S (1978) Determination of renal blood flow by thermodilution method. Scand J Clin Lab Invest 38:495–499

    Article  PubMed  CAS  Google Scholar 

  17. Hornych A, Brod J, Slechta V (1971) The measurement of the renal venous outflow in man by the local thermodilution method. Nephron 8:17–32

    Article  PubMed  CAS  Google Scholar 

  18. Brenner M, Schaer GL, Mallory DL, Suffredini AF, Parrillo JE (1990) Detection of renal blood flow abnormalities in septic and critically ill patients using a newly designed indwelling thermodilution renal vein catheter. Chest 98:170–179

    Article  PubMed  CAS  Google Scholar 

  19. Sward K, Valsson F, Sellgren J, Ricksten SE (2004) Bedside estimation of absolute renal blood flow and glomerular filtration rate in the intensive care unit. A validation of two independent methods. Intensive Care Med 30:1776–1782

    Article  PubMed  Google Scholar 

  20. Sward K, Valsson F, Sellgren J, Ricksten SE (2005) Differential effects of human atrial natriuretic peptide and furosemide on glomerular filtration rate and renal oxygen consumption in humans. Intensive Care Med 31:79–85

    Article  PubMed  Google Scholar 

  21. Redfors B, Bragadottir G, Sellgren J, Sward K, Ricksten SE (2011) Effects of norepinephrine on renal perfusion, filtration and oxygenation in vasodilatory shock and acute kidney injury. Intensive Care Med 37:60–67

    Article  PubMed  CAS  Google Scholar 

  22. Redfors B, Bragadottir G, Sellgren J, Sward K, Ricksten SE (2010) Dopamine increases renal oxygenation: a clinical study in post-cardiac surgery patients. Acta Anaesthesiol Scand 54:183–190

    Article  PubMed  CAS  Google Scholar 

  23. Hollenberg NK, Adams DF, Solomon H et al (1975) Renal vascular tone in essential and secondary hypertension: hemodynamic and angiographic responses to vasodilators. Medicine 54:29–44

    Article  PubMed  CAS  Google Scholar 

  24. Hollenberg NK, Sandor T (1984) Vasomotion of renal blood flow in essential hypertension. Oscillations in xenon transit. Hypertension 6:579–585

    Article  PubMed  CAS  Google Scholar 

  25. Hollenberg NK, Sandor T, Holtzman E, Meyerovitz MF, Harrington DP (1989) Renal vasomotion in essential hypertension: influence of vasodilators. Hypertension 14:9–13

    Article  PubMed  CAS  Google Scholar 

  26. Elkayam U, Mehra A, Cohen G et al (1998) Renal circulatory effects of adenosine in patients with chronic heart failure. J Am Coll Cardiol 32:211–215

    Article  PubMed  CAS  Google Scholar 

  27. Doucette JW, Corl PD, Payne HM et al (1992) Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 85:1899–1911

    Article  PubMed  CAS  Google Scholar 

  28. Fritzberg AR, Kasina S, Eshima D, Johnson DL (1986) Synthesis and biological evaluation of technetium-99 m MAG3 as a hippuran replacement. J Nucl Med 27:111–116

    PubMed  CAS  Google Scholar 

  29. Itoh K (2001) 99mTc-MAG3: review of pharmacokinetics, clinical application to renal diseases and quantification of renal function. Ann Nucl Med 15:179–190

    Article  PubMed  CAS  Google Scholar 

  30. Trejtnar F, Laznicek M (2002) Analysis of renal handling of radiopharmaceuticals. Q J Nucl Med 46:181–194

    PubMed  CAS  Google Scholar 

  31. Hilson AJ, Maisey MN, Brown CB, Ogg CS, Bewick MS (1978) Dynamic renal transplant imaging with Tc-99 m DTPA (Sn) supplemented by a transplant perfusion index in the management of renal transplants. J Nucl Med 19:994–1000

    PubMed  CAS  Google Scholar 

  32. Peters AM, Gunasekera RD, Lavender JP et al (1987) Noninvasive measurement of renal blood flow using DTPA. Contrib Nephrol 56:26–30

    PubMed  CAS  Google Scholar 

  33. Jafri RA, Britton KE, Nimmon CC et al (1988) Technetium-99 m MAG3, a comparison with iodine-123 and iodine-131 orthoiodohippurate, in patients with renal disorders. J Nucl Med 29:147–158

    PubMed  CAS  Google Scholar 

  34. Verbruggen AM, Nosco DL, Van Nerom CG, Bormans GM, Adriaens PJ, De Roo MJ (1992) Technetium-99 m-L,L-ethylenedicysteine: a renal imaging agent. I. Labeling and evaluation in animals. J Nucl Med 33:551–557

    PubMed  CAS  Google Scholar 

  35. Gates GF (1982) Glomerular filtration rate: estimation from fractional renal accumulation of 99mTc-DTPA (stannous). AJR Am J Roentgenol 138:565–570

    Article  PubMed  CAS  Google Scholar 

  36. Fawdry RM, Gruenewald SM, Collins LT, Roberts AJ (1985) Comparative assessment of techniques for estimation of glomerular filtration rate with 99mTc-DTPA. Eur J Nucl Med 11:7–12

    Article  PubMed  CAS  Google Scholar 

  37. Haufe SE, Riedmuller K, Haberkorn U (2006) Nuclear medicine procedures for the diagnosis of acute and chronic renal failure. Nephron Clin Pract 103:c77–c84

    Article  PubMed  Google Scholar 

  38. Mullani NA, Ekas RD, Marani S, Kim EE, Gould KL (1990) Feasibility of measuring first pass extraction and flow with rubidium-82 in the kidneys. Am J Physiol Imaging 5:133–140

    PubMed  CAS  Google Scholar 

  39. Tamaki N, Rabito CA, Alpert NM et al (1986) Serial analysis of renal blood flow by positron tomography with rubidium-82. Am J Physiol 251:H1024–H1030

    PubMed  CAS  Google Scholar 

  40. Szabo Z, Xia J, Mathews WB, Brown PR (2006) Future direction of renal positron emission tomography. Semin Nucl Med 36:36–50

    Article  PubMed  Google Scholar 

  41. Juillard L, Janier MF, Fouque D et al (2000) Renal blood flow measurement by positron emission tomography using 15O-labeled water. Kidney Int 57:2511–2518

    Article  PubMed  CAS  Google Scholar 

  42. Alpert NM, Rabito CA, Correia DJ et al (2002) Mapping of local renal blood flow with PET and H(2)(15)O. J Nucl Med 43:470–475

    PubMed  Google Scholar 

  43. Vallee JP, Lazeyras F, Khan HG, Terrier F (2000) Absolute renal blood flow quantification by dynamic MRI and Gd-DTPA. Eur Radiol 10:1245–1252

    Article  PubMed  CAS  Google Scholar 

  44. Marckmann P, Skov L, Rossen K et al (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17:2359–2362

    Article  PubMed  Google Scholar 

  45. Perazella MA (2009) Current status of gadolinium toxicity in patients with kidney disease. Clin J Am Soc Nephrol 4:461–469

    Article  PubMed  CAS  Google Scholar 

  46. Neuwelt EA, Hamilton BE, Varallyay CG et al (2009) Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int 75:465–474

    Article  PubMed  CAS  Google Scholar 

  47. Debatin JF, Ting RH, Wegmuller H et al (1994) Renal artery blood flow: quantitation with phase-contrast MR imaging with and without breath holding. Radiology 190:371–378

    PubMed  CAS  Google Scholar 

  48. Sommer G, Corrigan G, Fredrickson J et al (1998) Renal blood flow: measurement in vivo with rapid spiral MR imaging. Radiology 208:729–734

    PubMed  CAS  Google Scholar 

  49. Prowle JR, Molan MP, Hornsey E, Bellomo R (2010) Cine phase-contrast magnetic resonance imaging for the measurement of renal blood flow. Contrib Nephrol 165:329–336

    Article  PubMed  Google Scholar 

  50. Wolf RL, King BF, Torres VE, Wilson DM, Ehman RL (1993) Measurement of normal renal artery blood flow: cine phase-contrast MR imaging vs clearance of p-aminohippurate. AJR Am J Roentgenol 161:995–1002

    Article  PubMed  CAS  Google Scholar 

  51. de Haan MW, Kouwenhoven M, Kessels AG, van Engelshoven JM (2000) Renal artery blood flow: quantification with breath-hold or respiratory triggered phase-contrast MR imaging. Eur Radiol 10:1133–1137

    Article  PubMed  Google Scholar 

  52. King BF, Torres VE, Brummer ME et al (2003) Magnetic resonance measurements of renal blood flow as a marker of disease severity in autosomal-dominant polycystic kidney disease. Kidney Int 64:2214–2221

    Article  PubMed  Google Scholar 

  53. Prowle JR, Molan MP, Hornsey E, Bellomo R (2012) Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury: a pilot investigation. Crit Care Med 40:1768–1776

    Article  PubMed  Google Scholar 

  54. Golay X, Hendrikse J, Lim TC (2004) Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 15:10–27

    Article  PubMed  Google Scholar 

  55. Artz NS, Sadowski EA, Wentland AL et al (2011) Arterial spin labeling MRI for assessment of perfusion in native and transplanted kidneys. Magn Reson Imaging 29:74–82

    Article  PubMed  Google Scholar 

  56. Spuentrup E, Manning WJ, Bornert P, Kissinger KV, Botnar RM, Stuber M (2002) Renal arteries: navigator-gated balanced fast field-echo projection MR angiography with aortic spin labeling: initial experience. Radiology 225:589–596

    Article  PubMed  Google Scholar 

  57. Ritt M, Janka R, Schneider MP et al (2010) Measurement of kidney perfusion by magnetic resonance imaging: comparison of MRI with arterial spin labeling to para-aminohippuric acid plasma clearance in male subjects with metabolic syndrome. Nephrol Dial Transplant 25:1126–1133

    Article  PubMed  CAS  Google Scholar 

  58. Fenchel M, Martirosian P, Langanke J et al (2006) Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology 238:1013–1021

    Article  PubMed  Google Scholar 

  59. Textor SC, Glockner JF, Lerman LO et al (2008) The use of magnetic resonance to evaluate tissue oxygenation in renal artery stenosis. J Am Soc Nephrol 19:780–788

    Article  PubMed  Google Scholar 

  60. Warner L, Glockner JF, Woollard J, Textor SC, Romero JC, Lerman LO (2011) Determinations of renal cortical and medullary oxygenation using blood oxygen level-dependent magnetic resonance imaging and selective diuretics. Invest Radiol 46:41–47

    Article  PubMed  CAS  Google Scholar 

  61. Pruijm M, Hofmann L, Maillard M et al (2010) Effect of sodium loading/depletion on renal oxygenation in young normotensive and hypertensive men. Hypertension 55:1116–1122

    Article  PubMed  CAS  Google Scholar 

  62. Heine GH, Gerhart MK, Ulrich C, Kohler H, Girndt M (2005) Renal Doppler resistance indices are associated with systemic atherosclerosis in kidney transplant recipients. Kidney Int 68:878–885

    Article  PubMed  Google Scholar 

  63. Wan L, Yang N, Hiew CY et al (2008) An assessment of the accuracy of renal blood flow estimation by Doppler ultrasound. Intensive Care Med 34:1503–1510

    Article  PubMed  Google Scholar 

  64. Lerolle N, Guerot E, Faisy C, Bornstain C, Diehl JL, Fagon JY (2006) Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med 32:1553–1559

    Article  PubMed  Google Scholar 

  65. Rodrigo E, Lopez-Rasines G, Ruiz JC et al (2010) Determinants of resistive index shortly after transplantation: independent relationship with delayed graft function. Nephron Clin Pract 114:c178–186

    Article  PubMed  CAS  Google Scholar 

  66. Schneider A, Johnson L, Goodwin M, Schelleman A, Bellomo R (2011) Bench-to-bedside review: Contrast enhanced ultrasonography – a promising technique to assess renal perfusion in the ICU. Crit Care 15:157

    Article  PubMed  Google Scholar 

  67. Romero JR, Frey JL, Schwamm LH et al (2009) Cerebral ischemic events associated with “bubble study” for identification of right to left shunts. Stroke 40:2343–2348

    Article  PubMed  Google Scholar 

  68. Main ML, Ryan AC, Davis TE, Albano MP, Kusnetzky LL, Hibberd M (2008) Acute mortality in hospitalized patients undergoing echocardiography with and without an ultrasound contrast agent (multicenter registry results in 4,300,966 consecutive patients). Am J Cardiol 102:1742–1746

    Article  PubMed  Google Scholar 

  69. Dolan MS, Gala SS, Dodla S et al (2009) Safety and efficacy of commercially available ultrasound contrast agents for rest and stress echocardiography a multicenter experience. J Am Coll Cardiol 53:32–38

    Article  PubMed  CAS  Google Scholar 

  70. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97:473–483

    Article  PubMed  CAS  Google Scholar 

  71. Kishimoto N, Mori Y, Nishiue T et al (2003) Renal blood flow measurement with contrast-enhanced harmonic ultrasonography: evaluation of dopamine-induced changes in renal cortical perfusion in humans. Clin Nephrol 59:423–428

    PubMed  CAS  Google Scholar 

  72. Schwenger V, Korosoglou G, Hinkel UP et al (2006) Real-time contrast-enhanced sonography of renal transplant recipients predicts chronic allograft nephropathy. Am J Transplant 6:609–615

    Article  PubMed  CAS  Google Scholar 

  73. Benozzi L, Cappelli G, Granito M et al (2009) Contrast-enhanced sonography in early kidney graft dysfunction. Transplant Proc 41:1214–1215

    Article  PubMed  CAS  Google Scholar 

  74. Schneider AG, Hofmann L, Wuerzner G et al (2012) Renal perfusion evaluation with contrast-enhanced ultrasonography. Nephrol Dial Transplant 27:674–681

    Article  PubMed  CAS  Google Scholar 

  75. Textor SC, Lerman L (2010) Renovascular hypertension and ischemic nephropathy: state of the art. Am J Hypertens 23:1159–1169

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bellomo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg and BioMed Central Ltd.

About this chapter

Cite this chapter

Schneider, A.G., Goodwin, M.D., Bellomo, R. (2013). Measurement of Kidney Perfusion in Critically Ill Patients. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2013. Annual Update in Intensive Care and Emergency Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35109-9_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35109-9_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35108-2

  • Online ISBN: 978-3-642-35109-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics