Skip to main content

Abstract

Cardiopulmonary interactions are a direct consequence of the anatomy of the heart, lungs, and great vessels. Being intrathoracic structures, the heart, lungs, part of the vena cava, and part of the aorta are affected similarly by changes in pleural pressures. Additionally, the entire cardiac output flows from the right heart through the lungs towards the left heart as in three separate compartments arranged in series. This anatomy leads to: (1) reciprocal effects between the performance of the heart and that of the lung, because right cardiac filling is limited by lung expansion or by increments in pleural pressure; and (2) a delay between acute changes in right ventricular (RV) output and the observed effects in left ventricular (LV) output (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan BC, Martin WE, Hornbein TF, Crawford EW, Guntheroth WG (1966) Hemodynamic effects of intermittent positive pressure respiration. Anesthesiology 27:584–590

    Article  PubMed  CAS  Google Scholar 

  2. Jardin F, Farcot JC, Gueret P, Prost JF, Ozier Y, Bourdarias JP (1983) Cyclic changes in arterial pulse during respiratory support. Circulation 68:266–274

    Article  PubMed  CAS  Google Scholar 

  3. Pinsky M (1984) Determinants of pulmonary arterial flow variation during respiration. J App Physiol 56:1237–1245

    Article  CAS  Google Scholar 

  4. Jardin F, Delorme G, Hardy A, Auvert B, Beauchet A, Bourdarias JP (1990) Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology 72:966–970

    Article  PubMed  CAS  Google Scholar 

  5. Jardin F, Vieillard-Baron A (2003) Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med 29:1426–1434

    Article  PubMed  Google Scholar 

  6. Brower R, Wise RA, Hassapoyannes C, Bromberger-Barnea B, Permutt S (1985) Effect of lung inflation on lung blood volume and pulmonary venous flow. J Appl Physiol 58:954–963

    Article  PubMed  CAS  Google Scholar 

  7. Vieillard-Baron A, Chergui K, Augarde R et al (2003) Cyclic changes in arterial pulse during respiratory support revisited by doppler echocardiography. Am J Respir Crit Care Med 168:671–676

    Article  PubMed  Google Scholar 

  8. Robotham JL, Cherry D, Mitzner W, Rabson JL, Lixfeld W, Bromberger-Barnea B (1983) A re-evaluation of the hemodynamic consequences of intermittent positive pressure ventilation. Crit Care Med 11:783–793

    Article  PubMed  CAS  Google Scholar 

  9. Magder S (2004) Clinical usefulness of respiratory variations in arterial pressure. Am J Respir Crit Care Med 169:151–155

    Article  PubMed  Google Scholar 

  10. Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul J (2009) Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med 37:951–956

    Article  PubMed  Google Scholar 

  11. Michard F, Teboul J (2002) Predicting fluid responsiveness in icu patients: a critical analysis of the evidence. Chest 121:2000–2008

    Article  PubMed  Google Scholar 

  12. Bendjelid K, Romand J (2003) Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med 29:352–360

    Article  PubMed  Google Scholar 

  13. Marik PE, Cavallazzi R, Vasu T, Hirani A (2009) Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 37:2642–2647

    Article  PubMed  Google Scholar 

  14. Berkenstadt H, Margalit N, Hadani M et al (2001) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92:984–989

    Article  PubMed  CAS  Google Scholar 

  15. Reuter DA, Felbinger TW, Schmidt C et al (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28:392–398

    Article  PubMed  Google Scholar 

  16. Michard F, Chemla D, Richard C et al (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of peep. Am J Respir Crit Care Med 159:935–939

    Article  PubMed  CAS  Google Scholar 

  17. Michard F, Boussat S, Chemla D et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138

    Article  PubMed  CAS  Google Scholar 

  18. Michard F (2005) Volume management using dynamic parameters: the good, the bad, and the ugly. Chest 128:1902–1903

    Article  PubMed  Google Scholar 

  19. Jardin F (2004) Cyclic changes in arterial pressure during mechanical ventilation. Intensive Care Med 30:1047–1050

    Article  PubMed  Google Scholar 

  20. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–523

    Article  PubMed  Google Scholar 

  21. De Backer D, Taccone FS, Holsten R, Ibrahimi F, Vincent JL (2009) Influence of respiratory rate on stroke volume variation in mechanically ventilated patients. Anesthesiology 110:1092–1097

    Article  PubMed  Google Scholar 

  22. Renner J, Gruenewald M, Quaden R et al (2009) Influence of increased intra-abdominal pressure on fluid responsiveness predicted by pulse pressure variation and stroke volume variation in a porcine model. Crit Care Med 37:650–658

    Article  PubMed  Google Scholar 

  23. Mahjoub Y, Pila C, Friggeri A et al (2009) Assessing fluid responsiveness in critically ill patients: false-positive pulse pressure variation is detected by doppler echocardiographic evaluation of the right ventricle. Crit Care Med 37:2570–2575

    Article  PubMed  Google Scholar 

  24. Oliveira RH, Azevedo LCP, Park M, Schettino GPP (2009) Influence of ventilatory settings on static and functional haemodynamic parameters during experimental hypovolaemia. Eur J Anaesthesiol 26:66–72

    Article  PubMed  Google Scholar 

  25. Kim HK, Pinsky MR (2008) Effect of tidal volume, sampling duration, and cardiac contractility on pulse pressure and stroke volume variation during positive-pressure ventilation. Crit Care Med 36:2858–2862

    Article  PubMed  Google Scholar 

  26. Amato MB, Barbas CS, Medeiros DM et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    Article  PubMed  CAS  Google Scholar 

  27. da Silva Ramos FJ, de Oliveira EM, Park M, Schettino GPP, Azevedo LCP (2011) Heart-lung interactions with different ventilatory settings during acute lung injury and hypovolaemia: an experimental study. Br J Anaesth 106:394–402

    Article  PubMed  Google Scholar 

  28. Huang C, Fu J, Hu H et al (2008) Prediction of fluid responsiveness in acute respiratory distress syndrome patients ventilated with low tidal volume and high positive end-expiratory pressure. Crit Care Med 36:2810–2816

    Article  PubMed  Google Scholar 

  29. Vallée F, Richard JCM, Mari A et al (2009) Pulse pressure variations adjusted by alveolar driving pressure to assess fluid responsiveness. Intensive Care Med 35:1004–1010

    Article  PubMed  Google Scholar 

  30. Maerz L, Kaplan LJ (2008) Abdominal compartment syndrome. Crit Care Med 36:S212–215

    Article  PubMed  Google Scholar 

  31. De Backer D, Pinsky MR (2007) Can one predict fluid responsiveness in spontaneously breathing patients? Intensive Care Med 33:1111–1113

    Article  PubMed  Google Scholar 

  32. Teboul J, Monnet X (2008) Prediction of volume responsiveness in critically ill patients with spontaneous breathing activity. Curr Opin Crit Care 14:334–339

    Article  PubMed  Google Scholar 

  33. Magder S (2006) Predicting volume responsiveness in spontaneously breathing patients: still a challenging problem. Crit Care 10:165

    Article  PubMed  CAS  Google Scholar 

  34. Magder S, Georgidis G, Cheong T (1992) Respiratory variations in right atrial pressure predict the response to fluid challenge. J Crit Care 7:76–85

    Article  Google Scholar 

  35. Heenen S, De Backer D, Vincent JL (2006) How can the response to volume expansion in patients with spontaneous respiratory movements be predicted? Crit Care 10:R102

    Article  PubMed  Google Scholar 

  36. Maizel J, Airapetian N, Lorne E, Tribouilloy C, Massy Z, Slama M (2007) Diagnosis of central hypovolemia by using passive leg raising. Intensive Care Med 33:1133–1138

    Article  PubMed  Google Scholar 

  37. Perel A, Pizov R, Cotev S (1987) Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67:498–502

    Article  PubMed  CAS  Google Scholar 

  38. Coriat P, Vrillon M, Perel A et al (1994) A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg 78:46–53

    Article  PubMed  CAS  Google Scholar 

  39. Beaussier M, Coriat P, Perel A et al (1995) Determinants of systolic pressure variation in patients ventilated after vascular surgery. J Cardiothorac Vasc Anesth 9:547–551

    Article  PubMed  CAS  Google Scholar 

  40. Pizov R, Ya’ari Y, Perel A (1989) The arterial pressure waveform during acute ventricular failure and synchronized external chest compression. Anesth Analg 68:150–156

    Article  PubMed  CAS  Google Scholar 

  41. Pinsky MR, Matuschak GM, Itzkoff JM (1984) Respiratory augmentation of left ventricular function during spontaneous ventilation in severe left ventricular failure by grunting. An auto-epap effect. Chest 86:267–269

    Article  PubMed  CAS  Google Scholar 

  42. Charron C, Caille V, Jardin F, Vieillard-Baron A (2006) Echocardiographic measurement of fluid responsiveness. Curr Opin Crit Care 12:249–254

    Article  PubMed  Google Scholar 

  43. Barbier C, Loubières Y, Schmit C et al (2004) Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med 30:1740–1746

    PubMed  Google Scholar 

  44. Vieillard-Baron A, Augarde R, Prin S, Page B, Beauchet A, Jardin F (2001) Influence of superior vena caval zone condition on cyclic changes in right ventricular outflow during respiratory support. Anesthesiology 95:1083–1088

    Article  PubMed  CAS  Google Scholar 

  45. Beaulieu Y (2007) Bedside echocardiography in the assessment of the critically ill. Crit Care Med 35:S235–249

    Article  PubMed  Google Scholar 

  46. Costa ELV, Lima RG, Amato MBP (2009) Electrical impedance tomography. Curr Opin Crit Care 15:18–24

    Article  PubMed  Google Scholar 

  47. Fagerberg A, Stenqvist O, Aneman A (2009) Monitoring pulmonary perfusion by electrical impedance tomography: an evaluation in a pig model. Acta Anaesthesiol Scand 53:152–158

    Article  PubMed  CAS  Google Scholar 

  48. Deibele JM, Luepschen H, Leonhardt S (2008) Dynamic separation of pulmonary and cardiac changes in electrical impedance tomography. Physiol Meas 29:S1–S14

    Article  PubMed  CAS  Google Scholar 

  49. Maisch S, Bohm SH, Solà J et al (2011) Heart-lung interactions measured by electrical impedance tomography. Crit Care Med 39:2173–2176

    Article  PubMed  Google Scholar 

  50. Solà J, Adler A, Santos A, Tusman G, Sipmann FS, Bohm SH (2011) Non-invasive monitoring of central blood pressure by electrical impedance tomography: first experimental evidence. Med Biol Eng Comput 49:409–415

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. P. Amato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

da Silva Ramos, F.J., Costa, E.L.V., Amato, M.B.P. (2013). Bedside Monitoring of Heart-Lung Interactions. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2013. Annual Update in Intensive Care and Emergency Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35109-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35109-9_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35108-2

  • Online ISBN: 978-3-642-35109-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics