Skip to main content

Transform-Limited Attosecond Pulse Generation Through Atto-Chirp Compensation by Material Dispersion

  • Chapter
Progress in Ultrafast Intense Laser Science

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 104))

  • 1477 Accesses

Abstract

High harmonics are a unique light source with ultrashort duration and superb spatial coherence in the extreme ultraviolet and X-ray region. Though regularly spaced broad harmonic spectra are suitable for generating very short pulses, they suffer from the inherent chirp due to the harmonic generation process. Here we proposed and demonstrated the method to compensate for the attosecond chirp by propagating the harmonic pulses through a medium with negative group delay dispersion. In a single Ar gas cell, we showed that the chirp compensation could be achieved in the same harmonic generation cell, obtaining near transform-limited 206-as pulses. We could demonstrate also the generation of much shorter 63-as pulses by obtaining the harmonics from Ne and by compensating for the attosecond chirp in the second gas cell of Ar. The chirp compensation in gaseous media is, thus, very effective and powerful in obtaining near transform-limited attosecond pulses—very valuable for attosecond science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H.G. Muller, P. Agostini, Science 292, 1689 (2001)

    Article  ADS  Google Scholar 

  2. M. Hentschel, R. Kienberger, Ch. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414, 509 (2001)

    Article  ADS  Google Scholar 

  3. P. Antoine, A. L’Huillier, M. Lewenstein, Phys. Rev. Lett. 77, 1234 (1996)

    Article  ADS  Google Scholar 

  4. Y. Mairesse, A. de Bohan, L.J. Frasinski, H. Merdji, L.C. Dinu, P. Monchicourt, P. Breger, M. Kovacev, R. Taieb, B. Carre, H.G. Muller, P. Agostini, P. Salieres, Science 302, 1540 (2003)

    Article  ADS  Google Scholar 

  5. K.T. Kim, C.M. Kim, M.-G. Baik, G. Umesh, C.H. Nam, Phys. Rev. A 69, 051805(R) (2004)

    ADS  Google Scholar 

  6. K. Varju, Y. Mairesse, P. Agostini, P. Breger, B. Carre, L.J. Frasinski, E. Gustafsson, P. Johnsson, J. Mauritsson, H. Merdji, P. Monchicourt, A. L’Huillier, P. Salieres, Phys. Rev. Lett. 95, 243901 (2005)

    Article  ADS  Google Scholar 

  7. D.H. Ko, K.T. Kim, J. Park, J. Lee, C.H. Nam, New J. Phys. 12, 063008 (2010)

    Article  ADS  Google Scholar 

  8. K.T. Kim, C.M. Kim, M.G. Baik, G. Umesh, C.H. Nam, Appl. Phys. B 79, 563–567 (2004)

    Article  ADS  Google Scholar 

  9. K.T. Kim, K.S. Kang, M.N. Park, T. Imran, G. Umesh, C.H. Nam, Phys. Rev. Lett. 99, 223904 (2007)

    Article  ADS  Google Scholar 

  10. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  11. M. Lewenstein, P. Salieres, A. L’Huillier, Phys. Rev. A 52, 4747 (1995)

    Article  ADS  Google Scholar 

  12. D.G. Lee, H.J. Shin, Y.H. Cha, K.-H. Hong, J.-H. Kim, C.H. Nam, Phys. Rev. A 63, 021801(R) (2001)

    ADS  Google Scholar 

  13. P. Salieres, B. Carre, L. Le Deroff, F. Grasbon, G.G. Paulus, H. Walther, R. Kopold, W. Becker, D.B. Milosevic, A. Sanpera, M. Lewenstein, Science 292, 902 (2001)

    Article  ADS  Google Scholar 

  14. B.L. Henke, E.M. Gullikson, J.C. Davis, At. Data Nucl. Data Tables 54, 181 (1993)

    Article  ADS  Google Scholar 

  15. J.-H. Kim, C.H. Nam, Phys. Rev. A 65, 033801 (2002)

    Article  ADS  Google Scholar 

  16. H.J. Shin, D.G. Lee, Y.H. Cha, K.-H. Hong, C.H. Nam, Phys. Rev. Lett. 83, 2544 (1999)

    Article  ADS  Google Scholar 

  17. A.D. Shiner, B.E. Schmidt, C. Trallero-Herrero, H.J. Wörner, S. Patchkovskii, P.B. Corkum, J.-C. Kieffer, F. Légaré, D.M. Villeneuve, Nat. Phys. 7, 464 (2011)

    Article  Google Scholar 

  18. B.E. Schmidt, P. Bejot, M. Giguere, A.D. Shiner, C. Trallero-Herrero, E. Bission, J. Kasparian, J.-P. Wolf, D.M. Villeneuve, J.-C. Kieffer, P.B. Corkum, F. Legare, Appl. Phys. Lett. 96, 121109 (2010)

    Article  ADS  Google Scholar 

  19. H.T. Kim, I.J. Kim, D.G. Lee, K.-H. Hong, Y.S. Lee, V. Tosa, C.H. Nam, Phys. Rev. A 69, 031805(R) (2004)

    ADS  Google Scholar 

  20. V. Tosa, H.T. Kim, I.J. Kim, C.H. Nam, Phys. Rev. A 71, 063807 (2005)

    Article  ADS  Google Scholar 

  21. R. Lopez-Martens et al., Phys. Rev. Lett. 94, 033001 (2005)

    Article  ADS  Google Scholar 

  22. E. Gustafsson, T. Ruchon, M. Swoboda, T. Remetter, E. Pourtal, R. Lopez-Martens, Ph. Balcou, A. L’Huiller, Opt. Lett. 32, 1353 (2007)

    Article  ADS  Google Scholar 

  23. D.G. Lee, H.T. Kim, K.H. Hong, C.H. Nam, I.W. Choi, A. Bartnik, H. Fiedorowicz, Appl. Phys. Lett. 81, 3726 (2002)

    Article  ADS  Google Scholar 

  24. J.H. Sung, J.Y. Park, T. Imran, Y.S. Lee, C.H. Nam, Appl. Phys. B 82, 5–8 (2006)

    Article  ADS  Google Scholar 

  25. P. Kruit, F.H. Read, J. Phys. E, Sci. Instrum. 16, 313 (1983)

    Article  ADS  Google Scholar 

  26. T. Tsuboi, E.Y. Xu, Y.K. Bae, K.T. Gillen, Rev. Sci. Instrum. 59, 1357 (1988)

    Article  ADS  Google Scholar 

  27. L.C. Dinu, H.G. Muller, S. Kazamias, G. Mullot, F. Auge, Ph. Balcou, P.M. Paul, M. Kovacev, P. Breger, P. Agostini, Phys. Rev. Lett. 91, 063901 (2003)

    Article  ADS  Google Scholar 

  28. J.A.R. Samson, W.C. Stolte, J. Electron Spectrosc. Relat. Phenom. 123, 265 (2002)

    Article  Google Scholar 

  29. M. Gisselbrecht, D. Descamps, C. Lynga, A. L’Huillier, C.-G. Wahlstrom, M. Meyer, Phys. Rev. Lett. 82, 4607 (1999)

    Article  ADS  Google Scholar 

  30. E. Constant, D. Garzella, P. Breger, E. Mevel, Ch. Dorrer, C. Le Blanc, F. Salin, P. Agostini, Phys. Rev. Lett. 82, 1668 (1999)

    Article  ADS  Google Scholar 

  31. M. Schnurer, Z. Cheng, M. Hentschel, G. Tempea, P. Kalman, T. Brabec, F. Krausz, Phys. Rev. Lett. 83, 722 (1999)

    Article  ADS  Google Scholar 

  32. M. Bellini, C. Lynga, A. Tozzi, M.B. Gaarde, T.W. Hansch, A. L’Huillier, C.-G. Wahlstrom, Phys. Rev. Lett. 81, 297 (1998)

    Article  ADS  Google Scholar 

  33. G. Sansone et al., Science 314, 443 (2006)

    Article  ADS  Google Scholar 

  34. E. Goulielmakis et al., Science 320, 1614 (2008)

    Article  ADS  Google Scholar 

  35. X. Feng et al., Phys. Rev. Lett. 103, 183901 (2009)

    Article  ADS  Google Scholar 

  36. D.H. Ko, K.T. Kim, C.H. Nam, J. Phys. B, At. Mol. Opt. Phys. 45, 074015 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Education, Science and Technology of Korea through the National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Hee Nam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nam, C.H., Kim, K.T., Ko, D.H. (2013). Transform-Limited Attosecond Pulse Generation Through Atto-Chirp Compensation by Material Dispersion. In: Yamanouchi, K., Midorikawa, K. (eds) Progress in Ultrafast Intense Laser Science. Springer Series in Chemical Physics, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35052-8_5

Download citation

Publish with us

Policies and ethics