Skip to main content

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 1054 Accesses

Abstract

We present readers with an overview of lake management problems and the tools that can be applied to solve problems. Lake management tools are presented in detail, including environmental technological methods, ecotechnological methods and the application of models to assess the best management strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlgren I (1977) Role of sediments in the process of recovery of a eutrophicated lake. In: Golterman H. (ed.), Interaction between Sediment and Freshwater. Proceedings of an International Symposium Held at Amsterdam, The Netherlands, September 6-10, 1976. Dr. W. Junk B. V. Publishers, The Hague.

    Google Scholar 

  • Anderson HE (2004) Hydrology and nitrogen balance of a seasonally inundated Danish floodplane wetland. Hydrol Process 18:415–434.

    Article  Google Scholar 

  • Asada TB, Warner G, Schi SL (2005) Effects of shallow flooding on vegetation and carbon pools in boreal peatlands. Appl Veg Sci 8:199–208.

    Article  Google Scholar 

  • Beeby A (1995) Applying Ecology. Chapman & Hall, London.

    Google Scholar 

  • Bonnet C, Volat B, Bardin R, Degrange V, Montuelle B (1997) Use of immunofluorescence technique for studying a nitrobacterial population from wastewater treatment plant following discharge in river sediments: first experimental data. Water Res 31:661–664.

    Article  CAS  Google Scholar 

  • Brönmark C, Hansson LA (2005) The Biology of Lakes and Ponds, 2nd Edition. Oxford University Press Inc., New York, NY, p. 285.

    Google Scholar 

  • Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ Int 32:831–849.

    Article  CAS  Google Scholar 

  • Canfield D, Bachmann R (1981) Prediction of total phosphorus concentrations, chlorophyll a, and Secchi depths in natural and artificial lakes. Can J Fish Aquat Sci 38:414–423.

    Article  Google Scholar 

  • Chen W, Chen Y, Gao X, Yoshida I (1997) Eutrophication of Lake Taihu and its control. Int Agric Eng J 6:109–120.

    Google Scholar 

  • Chen Y, Qin B, Teubner K, Dokulil M (2003) Long-term dynamics of phytoplankton assemblages: Microcystis-Domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25:445–453.

    Article  Google Scholar 

  • Cooke GD, Carlson RE (1989) Reservoir Management for Water Quality and THM Precursor Control. AWWA Research Foundation and American Water Works Association, Denver, CO, p. 387.

    Google Scholar 

  • Corstanje R, Reddy KR (2004) Response of biogeochemical indicators to a drawdown and subsequent reflood. J Environ Qual 33:2357–2366.

    Article  CAS  Google Scholar 

  • Costa E, Perez J, Kreft JU (2006) Why is metabolic labor divided in nitrification? Trends Microbiol 14:213–219.

    Article  CAS  Google Scholar 

  • D’Angelo EM, Reddy KR (1999) Regulators of heterotrophic microbial potentials in wetland soils. Soil Biol Biochem 31:815–830.

    Article  CAS  Google Scholar 

  • Deb A, Bowers D (1983) Diurnal water quality modeling: a case study. J Water Pollut Control Fed 55:1473–1488.

    Google Scholar 

  • Dickman M, Pu P, Zheng C (1998) Taihu Lake: past, present and future. J Lake Sci (China) 10(Suppl):75–83.

    Google Scholar 

  • Dillon PJ, Rigler FH (1974) The phosphorus-chlorophyll relationship in lakes. Limnol Oceanogr 19:767–773.

    Article  CAS  Google Scholar 

  • Dodds WK, Johnson KR, Priscu JC (1989) Simultaneous nitrogen and phosphorous deficiency in natural phytoplankton assemblages: theory, empirical evidence, and implications for lake management. Lake Reserv Manag 5:21–26.

    Article  Google Scholar 

  • Elder FC (1975) International Joint Commission Program for Atmospheric Loading of the Upper Great Lakes. Second Interagency Committee on Marine Science and Engineering Conference on the Great Lakes, Argonne, Illinois.

    Google Scholar 

  • Florentz M, Hartemann P (1984) Screening for phosphate accumulating bacteria isolated from activated sludge. Environ Technol Lett 5:457–463.

    Article  CAS  Google Scholar 

  • Ford DE (1990) Reservoir transport processes. In: K.W. Thornton, B.L. Kimmel, F.E. Payne (eds.), Reservoir Limnology: Ecological Perspectives. John Wiley & Sons, Inc., New York, NY, pp. 15–41.

    Google Scholar 

  • Gergel SE, Carpenter SR, Stanley EH (2005) Do dams and levees impact nitrogen cycling? Simulating the effects of flood alterations on foodplain denitrification. Glob Change Biol 11:1352–1367.

    Article  Google Scholar 

  • He F, Wu ZB, Qiu DR (2002) Allelopathic effects between aquatic plant (Potamogeton crispus) and algae (Scenedesmus obliquus) in enclosures at Donghu Lake. Acta Hydrobiologica Sinica 26:421–424.

    Google Scholar 

  • Hecky RE (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol Oceanogr 3(4, part2 ):792–822.

    Google Scholar 

  • Hemond HF (1983) The nitrogen budget of Thoreau’s Bog. Ecology 64(1):99–109

    Article  Google Scholar 

  • Hogan DM, Jordan TE, Walbridge MR (2004) Phosphorus retention and soil organic carbon in restored and natural freshwater wetlands. Wetlands 24:573–585.

    Article  Google Scholar 

  • Horne AJ, Goldman CR (1994) Limnology. McGraw-Hill, Inc., New York, NY.

    Google Scholar 

  • Hutchinson GE (1957) A Treatise on Limnology Vol. 1 Geography, Physics and Chemistry. John Wiley & Sons, New York, NY.

    Google Scholar 

  • Jacoby JM, Lynch DD, Welch EB, Perkins MS (1982) Internal phosphorus loading in a shallow eutrophic lake. Water Res 16:911–919

    Article  CAS  Google Scholar 

  • Kelly CA, Rudd JWM, Bodaly RA, Roulet NP, St. Louis VL, Heyes A, Moore TR, Schi S, Aravena R, Scott KJ, Dyck B, Harris R, Warner B, Edwards G (1997) Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Environ Sci Technol 31:1334–1344.

    Article  CAS  Google Scholar 

  • Kittiwanich J, Yamamoto T, Kawaguchi O, Hashimoto T (2007) Analyses of phosphorus and nitrogen cyclings in the estuarine ecosystem of Hiroshima Bay by a pelagic and benthic coupled model. Estuary Coastal Shelf Sci 75:189–204.

    Article  Google Scholar 

  • Kotak BG, Kenefick SL, et al. (1993). Occurrence and toxicological evaluation of cyanobacterial toxins in Alberta lakes and farm dugouts. Water Res 27(3): 495–506.

    Article  CAS  Google Scholar 

  • Kotak BG, Prepas EE, Hrudey SE (1994) Blue-green algal toxins in drinking water supplies research in Alberta. LakeLine 14(1):37–40.

    Google Scholar 

  • Laiho R, Vasander H (2003) Dynamics of plant-mediated organic matter and nutrient cycling following water-level drawdown in boreal peatlands. Glob Bio Geochem Cycle 17(2):1–11.

    Google Scholar 

  • Lau SSS, Lane SN (2002) Biological and chemical factors influencing shallow lake eutrophication: a long-term study. Sci Total Environ 3:167–181.

    Article  Google Scholar 

  • Lawson EN, Tonhazy NE (1980) Changes in morphology and phosphate uptake patterns of Acinetobacter calcoaceticus strains. Water SA 6:105–112.

    Google Scholar 

  • Lawton LA, Codd GA (1991) Cyanobacterial (Blue-Green Algal) toxins and their significance in UK and European waters. Water Environ J 5(4): 460–465.

    Article  CAS  Google Scholar 

  • LeChevallier, Welch MWNJ, Smith DB (1996) Full-scale studies of factors related to coliform regrowth in drinking water. Appl Environ Microbiol 62(7):2201–2211.

    CAS  Google Scholar 

  • Lee GF (1973) Role of phosphorus in eutrophication and diffuse source control. Water Res 7:111–128.

    Article  Google Scholar 

  • Likens GE, Bormann FH, Pierce RS, Eaton JS, Johnson NM (1977) Biogeochemistry of a Forested Ecosystem. Springer-Verlag, New York.

    Book  Google Scholar 

  • Liu C, Wu G, Yu D, Wang D, Xia S (2004) Seasonal changes in height, biomass and biomass allocation of two exotic aquatic plants in a shallow eutrophic lake. J Freshw Ecol 19:41–45.

    Article  CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (1993) Wetlands, 2nd Ed. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Moore TR, Matos L, Roulet NT (2003) Dynamics and chemistry of dissolved organic carbon in Precambrian Shield catchments and an impounded wetland. Can J Fish Aquatic Sci 60:612–623.

    Article  CAS  Google Scholar 

  • Muller DK, Helsel DR (1999) Nutrients in the nation’s water—Too much of good thing? Circular 1136. U.S. Geological Survey, Denver.

    Google Scholar 

  • Murphy S (2002) General information on phosphorus. City of Boulder/USGS Water Quality Monitoring.

    Google Scholar 

  • Paerl HW (1997) Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as ‘new’ nitrogen and other nutrient sources. Limnol Oceanogr 42:1154–1165.

    Article  CAS  Google Scholar 

  • Rabalais NN, Galloway J, Cowling E (2002) Nitrogen in aquatic ecosystems. 2nd International Nitrogen Conference on Optimizing Nitrogen Management in Food and Energy Productions, and Environmental Change, Potomac, Maryland, USA, October 2001. Ambio 31:102–112.

    Google Scholar 

  • Reutter JM (1989) Lake Erie: Phosphorus and Eutrophication. Fact Sheet 015. Ohio Sea Grant College Program, Columbus.

    Google Scholar 

  • Reynolds CS (1984) The Ecology of Freshwater Phytoplankton. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Ryther JH, William MD (1971) Nitrogen, phosphorus and eutrophication in a coastal marine environment. Science 171:1008–1013.

    Article  CAS  Google Scholar 

  • Sawyer CH (1947) Fertilization of lakes by agricultural and urban drainage. J. of New England Water Works Ass. 61:109–127.

    Google Scholar 

  • Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195:260–262.

    Article  CAS  Google Scholar 

  • Schindler DW, Nighswander JE (1970) Nutrient supply and primary production in Clear Lake, eastern Ontario. J Fish Res Board Can 27:260–262.

    Article  Google Scholar 

  • Scott JA, Abumoghli I (1995) Modelling nitrification in the river Zarka of Jordan. Water Res 29:1121–1127.

    Article  CAS  Google Scholar 

  • Shu JH (1982) Lake eutrophication and its control. J. Environ. Quality 10:23–32.

    Google Scholar 

  • Smith VH (1986) Light and nutrient effects on relative biomass of blue green algae in lake phytoplankton. Can J Fish Aquatic Sci 43:148–153.

    Article  Google Scholar 

  • Søballe DM, Kimmel BL (1987) A large scale comparison of factors influencing phytoplankton abundance in lakes, rivers and impoundments. Ecol 68:1943–1954.

    Article  Google Scholar 

  • Søballe DM, Kimmel BL, Kennedy RH, Gaugush RF (1992) Biodiversity of the southeastern United States: Aquatic communities. Res 421–474.

    Google Scholar 

  • Song H, Heinz U (2008) Suppression of elliptic flow in a minimally viscous quark—gluon plasma. Phys Lett B 658(5):279–283.

    Article  CAS  Google Scholar 

  • St. Louis VL, Rudd JWM, Kelly CA, Beaty KG, Flett RJ, Roulet NT (1996) Production and loss of total mercury from boreal forest catchments containing different types of wetlands. Environmental Science and Technology 30:2719–2729

    Article  CAS  Google Scholar 

  • St. Louis VL, Partridge AD, Kelly CA, Rudd JWM (2003) Mineralization rates of peat from eroding peat islands in reservoirs. Biogochemistry 64:97–109.

    Article  CAS  Google Scholar 

  • St. Louis VL, Rudd JWM, Kelly CA, Bodaly RA, Paterson MJ, Beaty KG, Hesslein RH, Heyes A, Majewski AR (2004) The rise and fall of mercury methylation in an experimental reservoir. Environ Sci Technol 38:1348–1358.

    Article  CAS  Google Scholar 

  • Vollenweider RA, Kerekes J (1980) The loading concept as a basis for controlling eutrophication: Philosophy and preliminary results of the OECD program on eutrophication. Progr. Water Technol 12:5–38.

    CAS  Google Scholar 

  • Walker WW, Jr (1981) Empirical Methods for Predicting Eutrophication in Impoundments, Report 1, Phase I. Data Base Development. Tech. Rep. E-81-0. EWQOS, U.S. Army Corps of Engineers, Vicksburg, MS.

    Google Scholar 

  • Walker WW, Jr (1984) Empirical predication of chlorophyll in reservoirs. U.S. Environmental Protection Agency. Lake Res Manag 292–297.

    Google Scholar 

  • Walker WW, Jr (1985) Empirical Methods for Predicting Eutrophication in Impoundments, Rep. 3, Phase II. Model Refinements. Tech. Rep. E-81-9. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

    Google Scholar 

  • Wetzel RG (2001) Limnology (3rd ed.). Academic Press, New York, p. 1006.

    Google Scholar 

  • Wisconsin Dept. Natural Resources (1986) Nonpoint source pollution abatement program. Wisconsin Administrative Code NR 120. Madison, Wisconsin

    Google Scholar 

  • Young EO, Ross DS (2001) Phosphate release from seasonally flooded soils: a laboratory microcosm study. J Environ Qual 30:91–101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shen, Z., Niu, J., Wang, Y., Wang, H., Zhao, X. (2013). Distribution and Transformation of Nutrients in Large-Scale Lakes and Reservoirs. In: Distribution and Transformation of Nutrients and Eutrophication in Large-scale Lakes and Reservoirs. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34964-5_1

Download citation

Publish with us

Policies and ethics