Skip to main content

Evolutionary Feature Extraction to Infer Behavioral Patterns in Ambient Intelligence

  • Conference paper
Ambient Intelligence (AmI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7683))

Included in the following conference series:

Abstract

Machine learning methods have been applied to infer activities of users. However, the small number of training samples and their primitive representation often complicates the learning task. In order to correctly infer inhabitant’s behavior a long time of observation and data collection is needed. This article suggests the use of MFE3/GA\(^{D\!R}\), an evolutionary constructive induction method. Constructive induction has been used to improve learning accuracy through transforming the primitive representation of data into a new one where regularities are more apparent. The use of MFE3/GA\(^{D\!R}\) is expected to improve the representation of data and behavior learning process in an intelligent environment. The results of the research show that by applying MFE3/GA\(^{D\!R}\) a standard learner needs considerably less data to correctly infer user’s behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Philipose, M., Fishkin, K., Perkowitz, M., Patterson, D., Fox, D., Kautz, H., Hähnel, D.: Inferring activities from interactions with objects. IEEE Pervasive Computing, 50–57 (2004)

    Google Scholar 

  2. Campo, E., Chan, M.: Detecting abnormal behavior by real-time monitoring of patients. In: AAAI Workshop on Automation as Caregiver, pp. 8–12. AAAI Press (2002)

    Google Scholar 

  3. Tapia, E., Intille, S., Larson, K.: Activity Recognition in the Home Using Simple and Ubiquitous Sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Mozer, M.: An intelligent environment must be adaptive. Intelligent Systems and Their Applications 14, 11–13 (1999)

    Article  Google Scholar 

  5. Das, S., Cook, D., Battacharya, A., Heierman, L.T.Y.: The role of prediction algorithms in the mavhome smart home architecture. IEEE in Wireless Communications 9, 77–84 (2002)

    Article  Google Scholar 

  6. Aggrawal, J., Cai, Q.: Human motion analysis: A review. Computer Vision and Image Understanding 73(3), 428–440 (1999)

    Article  Google Scholar 

  7. Bourke, A., Lyons, G.: A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Medical Engineering and Physics 30(1), 84–90 (2008)

    Article  Google Scholar 

  8. Ravi, N., Dandekar, N., Mysore, P., Littman, M.: Activity recognition from accelerometer data. American Association for Artificial Intelligence 3, 1541–1546 (2005)

    Google Scholar 

  9. Huang, P.C., Lee, S.S., Kuo, Y.H., Lee, K.R.: A flexible sequence alignment approach on pattern mining and matching for human activity recognition. Expert Systems with Applications 37, 298–306 (2010)

    Article  Google Scholar 

  10. Liu, H., Motoda, H. (eds.): Feature Extraction, Construction and Selection: A Data Mining Perspective. The International Series in Engineering and Computer Science, SECS, vol. 453. Kluwer Academic Publishers, Norwell (1998)

    MATH  Google Scholar 

  11. Shafti, L.S.: Multi-feature Construction based on Genetic Algorithms and Non-algebraic Feature Representation to Facilitate Learning Concepts with Complex Interactions. PhD thesis, Escuela Politecnica Superior, Universidad Autonoma de Madrid (2008)

    Google Scholar 

  12. Shafti, L.S., Pérez, E.: Evolutionary multi-feature construction for data reduction: A case study. Journal of Applied Soft Computing 9(4), 1296–1303 (2009a)

    Article  Google Scholar 

  13. Shafti, L.S., Pérez, E.: Feature Construction and Feature Selection in Presence of Attribute Interactions. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 589–596. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Logan, B., Healey, J., Philipose, M., Tapia, E.M., Intille, S.: A Long-Term Evaluation of Sensing Modalities for Activity Recognition. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 483–500. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Guan, D., Yuan, W., Lee, Y., Gavrilov, A., Lee, S.: Activity recognition based on semi-supervised learning. In: The 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 469–475. IEEE Computer Society (2007)

    Google Scholar 

  16. Lustrek, M., Kaluza, B.: Fall detection and activity recognition with machine learning. Informatica 33, 205–212 (2009)

    Google Scholar 

  17. van Kasteren, T.L.M., Englebienne, G., Kröse, B.J.A.: An activity monitoring system for elderly care using generative and discriminative models. Personal and Ubiquitous Computing 14, 489–498 (2010)

    Article  Google Scholar 

  18. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)

    Google Scholar 

  19. Freitas, A.A.: Understanding the crucial role of attribute interaction in data mining. Artificial Intelligence Review 16(3), 177–199 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Saeys, Y., Inza, I., Larranaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  21. Liu, H., Motoda, H. (eds.): Computational Methods of Feature Selection. Data Mining and Knowledge Discovery Series. Chapman and Hall/CRC, New York (2007)

    MATH  Google Scholar 

  22. Zhao, Z., Liu, H.: Searching for interacting features in subset selection. Intelligent Data Analysis 13, 207–228 (2009)

    Google Scholar 

  23. Estébanez, C., Valls, J.M., Aler, R.: GPPE: a method to generate ad-hoc feature extractors for prediction in financial domains. Applied Intelligence 29(2), 174–185 (2008)

    Article  Google Scholar 

  24. Zhang, Y., Rockett, P.I.: Domain-independent feature extraction for multi-classification using multi-objective genetic programming. Pattern Analysis and Applications 13 (2009)

    Google Scholar 

  25. Zupan, B., Bratko, I., Bohanec, M., Demsar, J.: Function Decomposition in Machine Learning. In: Paliouras, G., Karkaletsis, V., Spyropoulos, C.D. (eds.) ACAI 1999. LNCS (LNAI), vol. 2049, pp. 71–101. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  26. Alfred, R.: DARA: Data summarisation with feature construction. In: Asia International Conference on Modelling and Simulation, pp. 830–835. IEEE Computer Society, Kuala Lumpur (2008)

    Chapter  Google Scholar 

  27. Grunwald, P.D.: The Minimum Description Length Principle. MIT Press (2007)

    Google Scholar 

  28. Boulle, M.: Khiops: A statistical discretization method of continuous attributes. Machine Learning 55, 53–69 (2004)

    Article  MATH  Google Scholar 

  29. Kurgan, L.A., Cios, K.J.: CAIM discretization algorithm. IEEE Transactions on Knowledge and Data Engineering 16(2), 145–153 (2004)

    Article  Google Scholar 

  30. García-Herranz, M., Haya, P.A., Montoro, G., Esquivel, A., Alamán, X.: Easing the smart home: Semi-automatic adaptation in perceptive environments. Journal of Universal Computer Science 14, 1529–1544 (2008)

    Google Scholar 

  31. Esquivel, A., Haya, P.A., García-Herranz, M., Alamán, X.: Managing Pervasive Environment Privacy Using the “fair trade” Metaphor. In: Meersman, R., Tari, Z. (eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 804–813. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  32. Haya, P.A., Montoro, G., Alamán, X.: A Prototype of a Context-Based Architecture for Intelligent Home Environments. In: Meersman, R., Tari, Z. (eds.) CoopIS/DOA/ODBASE 2004. LNCS, vol. 3290, pp. 477–491. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  33. Pidwirny, M.: Daily and annual cycles of temperature, fundamentals of physical geography, 2nd edn. (2006), http://www.physicalgeography.net/fundamentals/7l.html

  34. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  35. BoxLab Wiki Page, http://boxlab.wikispaces.com/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shafti, L.S., Haya, P.A., García-Herranz, M., Pérez, E. (2012). Evolutionary Feature Extraction to Infer Behavioral Patterns in Ambient Intelligence. In: Paternò, F., de Ruyter, B., Markopoulos, P., Santoro, C., van Loenen, E., Luyten, K. (eds) Ambient Intelligence. AmI 2012. Lecture Notes in Computer Science, vol 7683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34898-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34898-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34897-6

  • Online ISBN: 978-3-642-34898-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics