Skip to main content

Evaluating by MB Representation

  • Chapter
  • First Online:
Analytic Tools for Feynman Integrals

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 250))

  • 3406 Accesses

Abstract

One often uses Mellin integrals, when dealing with Feynman integrals. These are integrals over contours in a complex plane along the imaginary axis of products of gamma functions in the numerator and denominator. In particular, the inverse Mellin transform is given by such an integral. We will, however, deal with a very specific technique in this field. The key ingredient of the method presented in this chapter is the MB representationMellin–Barnes (MB) representation used to replace a sum of two terms raised to some power by the product of these terms raised to some powers. Our goal is to use such a factorization in order to achieve the possibility to perform integrations in terms of gamma functions, at the cost of introducing extra Mellin integrations. Then one obtains a multiple Mellin integral with gamma functions. The next step is the resolution of the singularities in \(\varepsilon \) by means of shifting contours and taking residues. It turns out that multiple MB integrals are very convenient for this purpose. The final step is to perform at least some of the Mellin integrations explicitly, by means of the first and the second Barnes lemmas and their corollaries and/or evaluate these integrals by closing the integration contours in the complex plane and summing up corresponding series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    First examples of application of Mellin integrals to Feynman integrals can be found in [8, 65].

  2. 2.

    Historically, it was first advocated and applied in [16].

  3. 3.

    In some situations, e.g. in a MB integral for the Gauss hypergeometric function, the asymptotic exponents of gamma functions cancel each other so that the convergence is defined by the value of the argument \(x\) which is present in the MB integral as \(x^z\). Depending on whether \(|x|<1\) or \(|x|>1\), one has to close the integration contour to the right or to the left. Closing the contours to the different sides corresponds to an analytical continuation with respect to the argument \(x\). However, there are certainly problems with the convergence in physical regions of kinematic variables, where factors of the type \(x^z\), with \(x<0\), are present—see [17].

  4. 4.

    In [26], it was demonstrated that this Feynman integral reduces, for any values of the three indices, to a two-point function in the shifted dimension \(d-2a_3\).

  5. 5.

    Well, this is only one half of the court for singles.

  6. 6.

    See also a similar discussion in [24, 25].

References

  1. C. Anastasiou, Z. Bern, L.J. Dixon, D.A. Kosower, Phys. Rev. Lett. 91, 251602 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  2. C. Anastasiou, A. Daleo, JHEP 0610, 031 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  3. C. Anastasiou, J.B. Tausk, M.E. Tejeda-Yeomans, Nucl. Phys. Proc. Suppl. 89, 262 (2000)

    Article  ADS  Google Scholar 

  4. H.H. Asatryan, H.M. Asatrian, C. Greub, M. Walker, Phys. Rev. D 65, 074004 (2002)

    Article  ADS  Google Scholar 

  5. T. Becher, M. Neubert, Phys. Lett. B 637, 251 (2006)

    Article  ADS  Google Scholar 

  6. M. Beneke, V.A. Smirnov, Nucl. Phys. B 522, 321 (1998)

    Article  ADS  Google Scholar 

  7. M.C. Bergère, C. de Calan, A.P.C. Malbouisson, Commun. Math. Phys. 62, 137 (1978)

    Article  ADS  Google Scholar 

  8. M.C. Bergère, Y.-M.P. Lam, Commun. Math. Phys. 39, 1 (1974)

    Article  ADS  Google Scholar 

  9. Z. Bern, M. Czakon, D.A. Kosower, R. Roiban, V.A. Smirnov, Phys. Rev. Lett. 97, 181601 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  10. Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower, V.A. Smirnov, Phys. Rev. D 75, 085010 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  11. Z. Bern, L.J. Dixon, V.A. Smirnov, Phys. Rev. D 72, 085001 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  12. I. Bierenbaum, J. Blumlein, S. Klein, C. Schneider, Nucl. Phys. B 803, 1 (2008)

    Article  ADS  MATH  Google Scholar 

  13. K. Bieri, C. Greub, M. Steinhauser, Phys. Rev. D 67, 114019 (2003)

    Article  ADS  Google Scholar 

  14. T. Binoth, G. Heinrich, Nucl. Phys. B 585, 741 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. T. Binoth, G. Heinrich, Nucl. Phys. B 680, 375 (2004)

    Article  ADS  MATH  Google Scholar 

  16. E.E. Boos, A.I. Davydychev, Theor. Math. Phys. 89, 1052 (1991) [Teor. Mat. Fiz. 89, 56 (1991)]

    Google Scholar 

  17. M. Czakon, Comput. Phys. Commun. 175, 559 (2006)

    Article  ADS  MATH  Google Scholar 

  18. M. Czakon, Phys. Lett. B 664, 307 (2008)

    Article  ADS  Google Scholar 

  19. M. Czakon, MBasymptotics.m [41]

    Google Scholar 

  20. M. Czakon, J. Gluza, T. Riemann, Nucl. Phys. Proc. Suppl. 135, 83 (2004)

    Article  ADS  Google Scholar 

  21. M. Czakon, J. Gluza, T. Riemann, Phys. Rev. D 71, 073009 (2005)

    Article  ADS  Google Scholar 

  22. M. Czakon, J. Gluza, T. Riemann, Nucl. Phys. Proc. Suppl. 157, 16 (2006)

    Article  ADS  Google Scholar 

  23. M. Czakon, J. Gluza, T. Riemann, Nucl. Phys. B 751, 1 (2006)

    Article  ADS  MATH  Google Scholar 

  24. M. Czakon, A. Mitov, S. Moch, Phys. Lett. B 651, 147 (2007)

    Article  ADS  Google Scholar 

  25. M. Czakon, A. Mitov, S. Moch, Nucl. Phys. B 798, 210 (2008)

    Article  ADS  Google Scholar 

  26. A.I. Davydychev, MYu. Kalmykov. Nucl. Phys. B 699, 3 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. A. Denner, B. Jantzen, S. Pozzorini, Nucl. Phys. B 761, 1 (2007)

    Article  ADS  MATH  Google Scholar 

  28. A. Denner, B. Jantzen, S. Pozzorini, PoS RADCOR 2007, 002 (2007)

    Google Scholar 

  29. A. Denner, B. Jantzen, S. Pozzorini, JHEP 0811, 062 (2008)

    Article  ADS  Google Scholar 

  30. A. Devoto, D.W. Duke, Riv. Nuovo Cim. 7(6), 1 (1984)

    Article  MathSciNet  Google Scholar 

  31. J. Fleischer, A.V. Kotikov, O.L. Veretin, Nucl. Phys. B 547, 343 (1999)

    Article  ADS  Google Scholar 

  32. T. Gehrmann, G. Heinrich, T. Huber, C. Studerus, Phys. Lett. B 640, 252 (2006)

    Article  ADS  Google Scholar 

  33. J. Gluza, K. Kajda, T. Riemann, Comput. Phys. Commun. 177, 879 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. J. Gluza, K. Kajda, T. Riemann, V. Yundin, PoS ACAT 08, 124 (2008)

    Google Scholar 

  35. J. Gluza, K. Kajda, T. Riemann, V. Yundin, Nucl. Phys. Proc. Suppl. 205–206, 147 (2010)

    Article  Google Scholar 

  36. R.J. Gonsalves, Phys. Rev. D 28, 1542 (1983)

    Article  ADS  Google Scholar 

  37. C. Greub, T. Hurth, D. Wyler, Phys. Rev. D 54, 3350 (1996)

    Article  ADS  Google Scholar 

  38. C. Greub, P. Liniger, Phys. Rev. D 63, 054025 (2001)

    Article  ADS  Google Scholar 

  39. G. Heinrich, T. Huber, D. Maitre, Phys. Lett. B 662, 344 (2008)

    Article  ADS  Google Scholar 

  40. G. Heinrich, V.A. Smirnov, Phys. Lett. B 598, 55 (2004)

    Article  ADS  Google Scholar 

  41. http://projects.hepforge.org/mbtools/

  42. B. Jantzen, V.A. Smirnov, Eur. Phys. J. C 47, 671 (2006)

    Article  ADS  Google Scholar 

  43. K.S. Kölbig, J.A. Mignaco, E. Remiddi, BIT 10, 38 (1970)

    Article  MATH  Google Scholar 

  44. K.S. Kölbig, Math. Comp. 39, 647 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  45. D.A. Kosower, barnesroutines.m [41]

    Google Scholar 

  46. L. Lewin, Polylogarithms and Associated Functions (North-Holland, Amsterdam, 1981)

    MATH  Google Scholar 

  47. S. Moch, P. Uwer, Comput. Phys. Commun. 174, 759 (2006)

    Article  ADS  MATH  Google Scholar 

  48. V. Pilipp, JHEP 0809, 135 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  49. K. Pohlmeyer, J. Math. Phys. 23, 2511 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  50. E. Remiddi, J.A.M. Vermaseren, Int. J. Mod. Phys. A 15, 725 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. A.V. Smirnov, V.A. Smirnov, Eur. Phys. J. C 62, 445 (2009)

    Article  ADS  MATH  Google Scholar 

  52. A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Phys. Rev. Lett. 104, 112002 (2010)

    Article  ADS  Google Scholar 

  53. V.A. Smirnov, Phys. Lett. B 460, 397 (1999)

    Article  ADS  Google Scholar 

  54. V.A. Smirnov, Phys. Lett. B 491, 130 (2000)

    Article  ADS  MATH  Google Scholar 

  55. V.A. Smirnov, Phys. Lett. B 500, 330 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. V.A. Smirnov, Phys. Lett. B 524, 129 (2002)

    Article  ADS  MATH  Google Scholar 

  57. V.A. Smirnov, Applied Asymptotic Expansions in Momenta and Masses (Springer, Heidelberg, 2002)

    MATH  Google Scholar 

  58. V.A. Smirnov, Phys. Lett. B 547, 239 (2002)

    Article  ADS  MATH  Google Scholar 

  59. V.A. Smirnov, Phys. Lett. B 567, 193 (2003)

    Article  ADS  MATH  Google Scholar 

  60. V.A. Smirnov, E.R. Rakhmetov, Teor. Mat. Fiz. 120, 64 (1999)

    Article  Google Scholar 

  61. V.A. Smirnov, Phys. Lett. B 465, 226 (1999)

    Article  ADS  Google Scholar 

  62. A.V. Smirnov, V.A. Smirnov, M. Tentyukov, Comput. Phys. Commun. 182, 790 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. V.A. Smirnov, O.L. Veretin, Nucl. Phys. B 566, 469 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  64. J.B. Tausk, Phys. Lett. B 469, 225 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. N.I. Ussyukina, Teor. Mat. Fiz. 22, 300 (1975)

    Article  Google Scholar 

  66. N.I. Ussyukina, A.I. Davydychev, Phys. Lett. B 298, 363 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  67. J.A.M. Vermaseren, Symbolic Manipulation with FORM (CAN, Amsterdam, 1991)

    Google Scholar 

  68. J.A.M. Vermaseren, Int. J. Mod. Phys. A 14, 2037 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. http://www.wolfram.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Smirnov .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smirnov, V.A. (2012). Evaluating by MB Representation. In: Analytic Tools for Feynman Integrals. Springer Tracts in Modern Physics, vol 250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34886-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34886-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34885-3

  • Online ISBN: 978-3-642-34886-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics