Skip to main content

Evaluating by Alpha and Feynman Parameters

  • Chapter
  • First Online:
Analytic Tools for Feynman Integrals

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 250))

  • 3765 Accesses

Abstract

Feynman parameters are very well known and often used in practical calculations. They are closely related to alpha parameters introduced in Chap. 2. The use of both kinds of parameters enables us to transform Feynman integrals over loop momenta into parametric integrals where Lorentz invariance becomes manifest. Using alpha parameters we will first evaluate one and two-loop integrals with general complex powers of the propagators, within dimensional regularization, for which results can be written in terms of gamma functions for general values of the dimensional regularization parameter. We will show then how these formulae, together with simple algebraic manipulations, enable us to evaluate some classes of Feynmans integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See, e.g. textbooks [20] and [7] and a recent review [26].

  2. 2.

    Thanks to A.G. Grozin for pointing out this possibility!

  3. 3.

    This result was first obtained in [21] by means of expansion in Chebyshev polynomials in momentum space. In [6], it was reproduced using Gegenbauer polynomials in coordinate space.

  4. 4.

    They were involved, in particular, in the calculation [1, 8] of two-loop matching coefficients of the vector current in QCD and Non-Relativistic QCD (NRQCD) [3, 4, 15, 25].

  5. 5.

    Much more terms of the \(\varepsilon \)-expansion, up to \(\varepsilon ^4\), of this non-planar diagram were obtained in [11]. Moreover, an explicit analytic result at general \(\varepsilon \) written in terms of hypergeometric series, was presented.

References

  1. M. Beneke, A. Signer, V.A. Smirnov, Phys. Rev. Lett. 80, 2535 (1998)

    Article  ADS  Google Scholar 

  2. K.S. Bjoerkevoll, P. Osland, G. Faeldt, Nucl. Phys. B 386, 303 (1992)

    Article  ADS  Google Scholar 

  3. G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 51, 1125

    Google Scholar 

  4. G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 55, 5853 (1997)

    Article  ADS  Google Scholar 

  5. H. Cheng, T.T. Wu, Expanding Protons: Scattering at High Energies (MIT Press, Cambridge, 1987)

    Google Scholar 

  6. K.G. Chetyrkin, A.L. Kataev, F.V. Tkachov, Nucl. Phys. B 174, 345 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  7. J.C. Collins, Renormalization (Cambridge University Press, Cambridge, 1984)

    Book  MATH  Google Scholar 

  8. A. Czarnecki, K. Melnikov, Phys. Rev. Lett. 87, 013001 (2001)

    Article  ADS  Google Scholar 

  9. A.I. Davydychev, Phys. Lett. B 263, 107 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  10. A.I. Davydychev, R. Delbourgo, J. Math. Phys. 39, 4299 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. T. Gehrmann, T. Huber, D. Maitre, Phys. Lett. B 622, 295 (2005)

    Article  ADS  Google Scholar 

  12. R.J. Gonsalves, Phys. Rev. D 28, 1542 (1983)

    Article  ADS  Google Scholar 

  13. A.G. Grozin, Heavy Quark Effective Theory (Springer, Heidelberg, 2004)

    Book  Google Scholar 

  14. G. Kramer, B. Lampe, J. Math. Phys. 28, 945 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  15. G.P. Lepage et al., Phys. Rev. D 46, 4052 (1992)

    Article  ADS  Google Scholar 

  16. A.V. Manohar, M.B. Wise, Heavy Quark Physics (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  17. W.L. van Neerven, Nucl. Phys. B 268, 453 (1986)

    Article  ADS  Google Scholar 

  18. M. Neubert, Phys. Rep. 245, 259 (1994)

    Article  ADS  Google Scholar 

  19. A. Pak, J. Phys. Conf. Ser. 368, 012049 (2012)

    Article  ADS  Google Scholar 

  20. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Perseus, Reading, 1995)

    Google Scholar 

  21. J.L. Rosner, Ann. Phys. 44, 11 (1967)

    Article  ADS  Google Scholar 

  22. A.V. Smirnov, http://science.sander.su/Tools-UF.htm

  23. O.V. Tarasov, Nucl. Phys. B 480, 397 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. O.V. Tarasov, Phys. Rev. D 54, 6479 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  25. B.A. Thacker, G.P. Lepage, Phys. Rev. D 43, 196 (1991)

    Article  ADS  Google Scholar 

  26. S. Weinzierl, arXiv:1005.1855 [hep-ph]

    Google Scholar 

  27. http://www.wolfram.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Smirnov .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smirnov, V.A. (2012). Evaluating by Alpha and Feynman Parameters. In: Analytic Tools for Feynman Integrals. Springer Tracts in Modern Physics, vol 250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34886-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34886-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34885-3

  • Online ISBN: 978-3-642-34886-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics