Skip to main content

Introduction

  • Chapter
  • First Online:
Analytic Tools for Feynman Integrals

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 250))

Abstract

The important mathematical problem of evaluating Feynman integrals arises quite naturally in elementary-particle physics when one treats various quantities in the framework of perturbation theory. Usually, it turns out that a given quantum-field amplitude that describes a process where particles participate cannot be completely treated in the perturbative way. However it also often turns out that the amplitude can be factorized in such a way that different factors are responsible for contributions of different scales. According to a factorization procedure a given amplitude can be represented as a product of factors some of which can be treated only non-perturbatively while others can be indeed evaluated within perturbation theory, i.e. expressed in terms of Feynman integrals over loop momenta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As is explained in textbooks on integral calculus, the method of IBP is applied with the help of the relation \(\int _a^b \mathrm{{d}} x u v^{\prime } = \left. u v\right|_a^b - \int _a^b \mathrm{{d}} x u^{\prime } v\) as follows. One tries to represent the integrand as \( u v^{\prime }\) with some \(u\) and \(v\) in such a way that the integral on the right-hand side, i.e. of \( u^{\prime } v\) will be simpler. We do not follow this idea in the case of Feynman integrals. Instead we only use the fact that an integral of the derivative of some function is zero, i.e. we always neglect the corresponding surface terms. So the name of the method looks misleading. It is however unambiguously accepted in the physics community.

  2. 2.

    Since the Feynman integrals are rather complicated objects the word ‘multi-loop’ means the number of loops greater than one ;-)

References

  1. M. Beneke, V.A. Smirnov, Nucl. Phys. B 522, 321 (1998)

    Article  ADS  Google Scholar 

  2. T. Binoth, G. Heinrich, Nucl. Phys. B 585 741 (2000)

    Google Scholar 

  3. T. Binoth, G. Heinrich, Nucl. Phys. B 680 375 (2004)

    Google Scholar 

  4. C. Bogner, S. Weinzierl, Comput. Phys. Commun. 178, 596 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. C.G. Bollini, J.J. Giambiagi, Nuovo Cim. B 12, 20 (1972)

    Google Scholar 

  6. P. Breitenlohner, D. Maison, Commun. Math. Phys. 52 (1977) 11, 39, 55

    Google Scholar 

  7. K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B 192, 159 (1981)

    Article  ADS  Google Scholar 

  8. G. ’t Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972)

    Google Scholar 

  9. B. Jantzen, A.V. Smirnov, V.A. Smirnov, Eur. Phys. J. C 72, 2139 (2012)

    Article  ADS  Google Scholar 

  10. T. Kaneko, T. Ueda, Comput. Phys. Commun. 181, 1352 (2010)

    Article  ADS  MATH  Google Scholar 

  11. A.V. Kotikov, Phys. Lett. B 254, 158 (1991)

    Google Scholar 

  12. A.V. Kotikov, Phys. Lett. B 259 314 (1991)

    Google Scholar 

  13. A.V. Kotikov, Phys. Lett. B 267, 123 (1991)

    Google Scholar 

  14. S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000)

    MathSciNet  ADS  MATH  Google Scholar 

  15. S. Laporta, E. Remiddi, Phys. Lett. B 379, 283 (1996)

    Article  ADS  Google Scholar 

  16. R.N. Lee, JHEP 0807, 031 (2008)

    Article  ADS  Google Scholar 

  17. A. Pak, A.V. Smirnov, Eur. Phys. J. C 71, 1626 (2011)

    Article  ADS  Google Scholar 

  18. E. Remiddi, Nuovo Cim. A 110, 1435 (1997)

    ADS  Google Scholar 

  19. A.V. Smirnov, M.N. Tentyukov, Comput. Phys. Commun. 180, 735 (2009)

    Article  ADS  MATH  Google Scholar 

  20. V.A. Smirnov, Phys. Lett. B 460, 397 (1999)

    Article  ADS  Google Scholar 

  21. V.A. Smirnov, Applied Asymptotic Expansions in Momenta and Masses (Springer, Heidelberg, Berlin, 2002)

    MATH  Google Scholar 

  22. J.B. Tausk, Phys. Lett. B 469, 225 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Smirnov .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smirnov, V.A. (2012). Introduction. In: Analytic Tools for Feynman Integrals. Springer Tracts in Modern Physics, vol 250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34886-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34886-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34885-3

  • Online ISBN: 978-3-642-34886-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics