Skip to main content

Governing Equations for Wave Propagation in a Fluid-Saturated Porous Medium

  • Chapter
  • First Online:
Multi-Component Acoustic Characterization of Porous Media

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter the governing equations for wave propagation in a fluid-saturated porous medium are derived and the involved physical mechanisms and acoustic parameters are discussed. It is shown that the stress-strain relations associated with Biot’s theory can be straightforward obtained from constitutive and continuity equations. Equations of motion are derived by combining these stress-strain relations with momentum equations. We present the equations of motion in the two different formulations that are known in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz, M., & Stegun, I. A. (1972). Handbook of Mathematical Functions. New York: Dover.

    Google Scholar 

  • Achenbach, J. D. (1973). Wave Propagation in Elastic Solids. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • Aki, K., & Richards, P. G. (1980). Quantitative Seismology. New York: Freeman and Company.

    Google Scholar 

  • Allard, J. F. (1993). Propagation of Sound in Porous Media: Modelling of Sound Absorbing Materials. New York: Elsevier Applied Science.

    Google Scholar 

  • Berryman, J. G. (1981). Elastic wave propagation in fluid-saturated porous media. Journal of the Acoustical Society of America, 69, 416–424.

    Article  Google Scholar 

  • Biot, M. A. (1955). Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 26, 182–185.

    Article  Google Scholar 

  • Biot, M. A. (1956a). Theory of propagation of elastic waves in a fluid-saturated porous solid. I Low-frequency range. Journal of the Acoustical Society of America, 28, 168–178.

    Article  Google Scholar 

  • Biot, M. A. (1956b). Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. Journal of the Acoustical Society of America, 28, 179–191.

    Article  Google Scholar 

  • Biot, M. A., & Willis, D. G. (1957). The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 24, 594–601.

    Google Scholar 

  • Bonnet, G. (1987). Basic singular solutions for a poroelastic medium in the dynamic range. Journal of the Acoustical Society of America, 82(5), 1758–1762.

    Article  Google Scholar 

  • Brown, R. J. S., & Korringa, J. (1975). On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics, 40, 608–616.

    Article  Google Scholar 

  • Burridge, R., & Keller, J. B. (1981). Poroelasticity equations derived from microstructure. Journal of the Acoustical Society of America, 70, 1140–1146.

    Article  Google Scholar 

  • Davis, J. L. (1988). Wave Propagation in Solids and Fluids. New York: Springer.

    Google Scholar 

  • de Hoop, A. T. (1995). Handbook of Radiation and Scattering of Waves. London: Academic Press.

    Google Scholar 

  • Degrande, G., de Roeck, G., van den Broeck, P., & Smeulders, D. (1998). Wave propagation in layered dry, saturated and unsaturated poroelastic media. International Journal of Solids and Structures, 35, 4753–4778.

    Article  Google Scholar 

  • Deresiewicz, H., & Skalak, R. (1963). On uniqueness in dynamic poroelasticity. Bulletin of the Seismological Society of America, 53, 783–788.

    Google Scholar 

  • Gassmann, F. (1951). Elastic waves through a packing of spheres. Geophysics, 16, 673–685.

    Article  Google Scholar 

  • Geertsema, J., & Smit, D. C. (1961). Some aspects of elastic wave propagation in fluid-saturated porous solids. Geophysics, 26, 169–181.

    Article  Google Scholar 

  • Graff, K. F. (1975). Stress Waves in Solids. New York: Oxford University Press.

    Google Scholar 

  • Johnson, D. L., Koplik, J., & Dashen, R. (1987). Theory of dynamic permeability and tortuosity in fluid-saturated porous-media. Journal of Fluid Mechanics, 176, 379–402.

    Article  Google Scholar 

  • Kelder, O. (1998). Frequency-dependent Wave Propagation in Water-saturated Porous Media. Ph.D. thesis, Delft University of Technology, Delft.

    Google Scholar 

  • Love, A. E. H. (1944). A Treatise on the Mathematical Theory of Elasticity. New York: Dover.

    Google Scholar 

  • Pierce, A. D. (2007). Basic linear acoustics. In T. D. Rossing (Ed.), Springer handbook of acoustics. New York: Springer.

    Google Scholar 

  • Prudnikov, A. P., Brychkov, Yu. A., & Marichev, O. I. (1992). Integrals and Series, Inverse Laplace Transforms (Vol. 5). New York: Gordon and Breach.

    Google Scholar 

  • Schanz, M. (2009). Poroelastodynamics: Linear models, analytical solutions, and numerical methods. Applied Mechanics Reviews, 62, 1–15.

    Article  Google Scholar 

  • Smeulders, D. M. J. (1992). On Wave Propagation in Saturated and Partially Saturated Porous Media. Ph.D. thesis, University of Technology Eindhoven, Eindhoven.

    Google Scholar 

  • Smeulders, D. M. J., Eggels, R. L. G. M., & van Dongen, M. E. H. (1992). Dynamic permeability: Reformulation of theory and new experimental and numerical data. Journal of Fluid Mechanics, 245, 211–227.

    Article  Google Scholar 

  • Stoll, R .D. (1974). Acoustic waves in saturated sediments. In L. D. Hampton (Ed.), Physics of Sound in Marine Sediments. New York: Plenum.

    Google Scholar 

  • van Dalen, K. N., Drijkoningen, G. G., & Smeulders, D. M. J. (2008). Characterization of subsurface parameters with combined fluid-pressure and particle-velocity measurements. In: Rome 2008 Leveraging Technology (Proceedings of the 70th EAGE Conference). Houten: EAGE.

    Google Scholar 

  • Verruijt, A. (1982). The theory of consolidation. In J. Bear & M. Y. Corapcioglu (Eds.), Proceedings of NATO Advanced Study Institute on Mechanics of Fluids in Porous Media. Dordrecht: Martinus Nijhoff Publishers.

    Google Scholar 

  • Wapenaar, C. P. A., & Berkhout, A. J. (1989). Elastic Wave Field Extrapolation. Amsterdam: Elsevier.

    Google Scholar 

  • Wiebe, Th., & Antes, H. (1991). A time domain integral formulation of dynamic poroelasticity. Acta Mechanica, 90, 125–137.

    Google Scholar 

  • Wisse, C. J. (1999). On Frequency Dependence of Acoustic Waves in Porous Cylinders. Ph.D. thesis, Delft University of Technology, Delft.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel N. van Dalen .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Dalen, K.N. (2013). Governing Equations for Wave Propagation in a Fluid-Saturated Porous Medium. In: Multi-Component Acoustic Characterization of Porous Media. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34845-7_2

Download citation

Publish with us

Policies and ethics