Skip to main content

The Role of Time-Averaged Volcanic Sulphur Emissions in the Pre-industrial Era

  • Chapter
  • First Online:
Modelling Tropospheric Volcanic Aerosol

Part of the book series: Springer Theses ((Springer Theses))

  • 631 Accesses

Abstract

Observations and models have shown that continuously degassing and sporadically erupting volcanoes have a potentially large effect on the natural background aerosol loading and the radiative state of the atmosphere. For this chapter a global aerosol microphysics model (GLOMAP-mode) has been used to quantify the impact of these volcanic emissions on the cloud albedo radiative forcing under pre-industrial atmospheric conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As outlined in Chap. 2 the Andres and Kasgnoc (1998) inventory is commonly scaled by a factor of 1.21 (Dentener et al. 2006) following recommendations of Graf et al. (1998) and Textor et al. (2004), who highlighted that the original inventory is likely an underestimate. Note that throughout this thesis the scaled Andres and Kasgnoc (1998) inventory is used.

  2. 2.

    http://www.volcano.si.edu/world/summary.xls

  3. 3.

    As outlined in Chap. 2 it is assumed that 2.5 % of the total volcanic sulphur flux is emitted as primary \(\mathrm{{SO}}_4\), hence after partitioning into \(\mathrm{{SO}}_2\) and primary \(\mathrm{{SO}}_4\) the annual mean volcanic \(\mathrm{{SO}}_2\) flux equates to 12.27 Tg(S).

  4. 4.

    Note that these authors did not provide a global mean value, which would have been more meaningful for the comparison.

References

  • Andres RJ, Kasgnoc AD (1998) A time-averaged inventory of subaerial volcanic sulfur emissions. J Geophys Res 103:25251–25262

    Article  Google Scholar 

  • Chen Y, Penner JE (2005) Uncertainty analysis for estimates of the first indirect aerosol effect. Atmos Chem Phys 5:2935–2948

    Article  Google Scholar 

  • Chin M, Jacob DJ (1996) Anthropogenic and natural contributions to tropospheric sulfate: a global model analysis. J Geophys Res 101:18691–18699

    Article  Google Scholar 

  • Dentener F, Kinne S, Bond T, Boucher O, Cofala J, Generoso S, Ginoux P, Gong S, Hoelzemann JJ, Ito A, Marelli L, Penner JE, Putaud JP, Textor C, Schulz M, van der Werf GR, Wilson J (2006) Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos Chem Phys 6:4321–4344

    Article  Google Scholar 

  • Edwards JM, Slingo A (1996) Studies with a flexible new radiation code. I: choosing a configuration for a large-scale model. QJR Meteorol Soc 122:689–719

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D, Haywood J, Lean J, Lowe D, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Chen Z, Manning M, Marquis M, Averyt KB, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, pp 129–234

    Google Scholar 

  • Fountoukis C, Nenes A, Meskhidze N, Bahreini R, Conant WC, Jonsson H, Murphy S, Sorooshian A, Varutbangkul V, Brechtel F, Flagan RC, Seinfeld JH (2007) Aerosol-cloud drop concentration closure for clouds sampled during the international consortium for atmospheric research on transport and transformation 2004 campaign. J Geophys Res 112:D10S30

    Google Scholar 

  • Gong SL (2003) A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Glob Biogeochem Cycles 17(4):1097

    Article  Google Scholar 

  • Graf HF, Feichter J, Langmann B (1997) Volcanic sulfur emissions: estimates of source strength and its contribution to the global sulfate distribution. J Geophys Res 102:727–738

    Article  Google Scholar 

  • Graf HF, Langmann B, Feichter J (1998) The contribution of Earth degassing to the atmospheric sulfur budget. Chem Geol 147:131–145

    Article  Google Scholar 

  • Kellogg WW, Cadle RD, Allen ER, Lazrus AL, Martell EA (1972) The sulfur cycle. Science 175:587–596

    Article  Google Scholar 

  • Kettle AJ, Andreae MO (2000) Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J Geophys Res 105:26793–26808

    Article  Google Scholar 

  • Kump LR, Pollard D (2008) Amplification of cretaceous warmth by biological cloud feedbacks. Science 320:195

    Article  Google Scholar 

  • Lambert G, Le Cloarec MF, Pennisi M (1988) Volcanic output of SO\(_2\) and trace metals: a new approach. Geochimica et Cosmochimica Acta 52:39–42

    Article  Google Scholar 

  • Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737

    Article  Google Scholar 

  • Manktelow PT, Carslaw KS, Mann GW, Spracklen DV (2009) Variable CCN formation potential of regional sulfur emissions. Atmos Chem Phys 9:3253–3259

    Article  Google Scholar 

  • Mann GW, Carslaw KS, Spracklen DV, Ridley DA, Manktelow PT, Chipperfield MP, Pickering SJ, Johnson CE (2010) Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model. Geosci Model Dev 3:519–551

    Article  Google Scholar 

  • Merikanto J, Spracklen DV, Pringle KJ, Carslaw KS (2010) Effects of boundary layer particle formation on cloud droplet number and changes in cloud albedo from 1850 to 2000. Atmos Chem Phys 10:695–705

    Article  Google Scholar 

  • Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS, Liddicoat MI, Boutin J, Upstill-Goddard RC (2000) In situ evaluation of air-sea gas exchange–parameterizations using novel conservative and volatile tracers. Glob Biogeochem Cycles 14(1):373–387

    Article  Google Scholar 

  • Penner JE, Andrea M, Annegarn H, Barrie L, Feichter J, Hegg D, Jayaraman A, Leaitch R, Murphy D, Nganga J, Pitari GEA (2001) The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. In: Houghton JT, Ding YEA (eds) Climate change 2001. Cambridge University Press, Cambridge

    Google Scholar 

  • Pringle KJ, Carslaw KS, Spracklen DV, Mann GM, Chipperfield MP (2009) The relationship between aerosol and cloud drop number concentrations in a global aerosol microphysics model. Atmos Chem Phys 9:4131–4144

    Article  Google Scholar 

  • Ramaswamy V, Boucher O, Haigh J, Hauglustaine D, Haywood J, Myhre J, Nakajima T, Shi G, Solomon S (2001) The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. In: Climate change (2001) Radiative forcing of climate. Cambridge University Press, Cambridge

    Google Scholar 

  • Roelofs GJ, Stier P, Feichter J, Vignati E, Wilson J (2006) Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM. Atmos Chemis Phys 6:2389–2399

    Article  Google Scholar 

  • Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80:2261–2287

    Article  Google Scholar 

  • Schmidt A, Carslaw KS, Mann GW, Rap A, Pringle KJ, Spracklen DV, Wilson M, Forster PM (2012) Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate. Atmos Chem Phys 12:7321–7339. doi:10.5194/acp-12-7321-2012

    Article  Google Scholar 

  • Smith SJ, van Aardenne J, Klimont Z, Andres R, Volke A (2010) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys Discuss 10:16111–16151

    Article  Google Scholar 

  • Stevenson DS, Johnson CE, Collins WJ, Derwent RG (2003a) The tropospheric sulphur cycle and the role of volcanic SO\(_2\). Volcan Degassing 295–305

    Google Scholar 

  • Stevenson DS, Johnson CE, Highwood EJ, Gauci V, Collins WJ, Derwent RG (2003b) Atmospheric impact of the 1783–1784 Laki eruption: part I chemistry modelling. Atmos Chem Phys 3:487–507

    Article  Google Scholar 

  • Textor C, Graf C, Robock A (2004) Emissions from volcanoes. In: Granier C, Artaxo P, Reeves C (eds) Emissions of chemical compounds and aerosols in the atmosphere. Kluwer, Dordrecht, pp 269–303

    Google Scholar 

  • Thomas MA, Suntharalingam P, Pozzoli L, Rast S, Devasthale A, Kloster S, Feichter J, Lenton TM (2010) Quantification of DMS aerosol-cloud-climate interactions using the ECHAM5-HAMMOZ model in a current climate scenario. Atmos Chem Phys 10:7425–7438

    Article  Google Scholar 

  • Williams K, Tselioudis G (2007) GCM intercomparison of global cloud regimes: present-day evaluation and climate change response. Clim Dyn 29:231–250. doi:10.1007/s00382-007-0232-2

    Article  Google Scholar 

  • Woodhouse MT, Carslaw KS, Mann GW, Vallina SM, Vogt M, Halloran PR, Boucher O (2010) Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide. Atmos Chem Phys 10:7545–7559

    Article  Google Scholar 

  • Yuan T, Remer LA, Yu H (2011) Microphysical, macrophysical and radiative signatures of volcanic aerosols in trade wind cumulus observed by the A-Train. Atmos Chem Phys Discuss 11:6415–6455

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Schmidt .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, A. (2013). The Role of Time-Averaged Volcanic Sulphur Emissions in the Pre-industrial Era. In: Modelling Tropospheric Volcanic Aerosol. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34839-6_3

Download citation

Publish with us

Policies and ethics