Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 2383 Accesses

Abstract

The aim of tissue engineering is to develop cell, construct, and living system technologies to restore the structures and functions of damaged or degenerated tissues. Surgical strategies that have evolved to deal with tissue loss include organ transplantation from one individual to another, tissue transfer from a healthy site to an affected site in the same individual, and replacement of tissue functions with synthetic material devices. All of these strategies have limitations. Organ transplantation is not always feasible as the number of organ donors is far less than the number of patients waiting for organ transplantation. The complications of immuno-suppressive agents are also trouble for the organ recipients. Tissue engineering (TE) seeks to provide a new solution to tissue loss. Scaffolds with porous microstructures are commonly used in TE. This chapter reviews and reports the TE strategy, requirements of scaffolds in TE, as well as different biomaterials that are often used to fabricate tissue engineering scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen C, Yu Y, Maysinger D, Eisenberg A (1998) Polycaprolactone-b-poly(ethylene Oxide) block copolymer micelles as a novel drug delivery vehicle for neurotrophic agents FK506 and L-685,818. Bioconjug Chem 9(5):564–572

    Article  Google Scholar 

  • Albertsson AC (2002) Degradable aliphatic polyesters. Springer, Berlin

    Google Scholar 

  • ASTM standard F2150 (2002) Standard guide for characterization and testing of biomaterial scaffolds used in tissue-engineered medical products. ASTM international, West conshohocken, PA, USA

    Google Scholar 

  • ASTM standard F 1635-04a (2004) Standard test method for in vitro degradation testing of hydrolytically degradable polymer resins and fabricated forms for surgical implants. ASTM international, West conshohocken, PA, USA

    Google Scholar 

  • Bell E (1993) Tissue engineering: current perspectives. Birkhäuser, Boston

    Google Scholar 

  • Blümm E, Owen AJ (1995) Miscibility, crystallization and melting of poly (3-hydroxybutyrate)/poly (l-lactide) blends. Polym 36(21):4077–4081

    Article  Google Scholar 

  • Chen LJ, Wang M (2002) Production and evaluation of biodegradable composites based on PHB—PHV copolymer. Biomater 23(13):2631–2639

    Article  Google Scholar 

  • Chen Y, Mak AFT, Wang M, Li J, Wong MS (2006) PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity. Surf Coat Tech 201(3–4):575–580

    Article  Google Scholar 

  • Fung YC (1993) Biomechanics : mechanical properties of living tissues. Springer, New York

    Google Scholar 

  • Galgut P, Pitrola R, Waite I, Doyle C, Smith R (1991) Histological evaluation of biodegradable and non-degradable membranes placed transcutaneously in rats. J Clin Periodontol 18(8):581–586

    Article  Google Scholar 

  • Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84

    Article  Google Scholar 

  • Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, New York

    Google Scholar 

  • Gogolewski S, Jovanovic M, Perren SM, Dillon JG, Hughes MK (1993) Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J Biomed Mater Res 27(9):1135–1148

    Article  Google Scholar 

  • Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482

    Article  Google Scholar 

  • Holmes PA (1982) Developments in crystalline polymers. In: Bassett DC (ed). Elsevier Applied Science, London

    Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  Google Scholar 

  • Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Comm 21(3):117–132

    Article  Google Scholar 

  • Kenar H, Kocabas A, Aydinli A, Hasirci V (2008) Chemical and topographical modification of PHBV surface to promote osteoblast alignment and confinement. J Biomed Mater Res, Part A 85A(4):1001–1010

    Article  Google Scholar 

  • Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT (2008) Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am 90(Supplement_1):36–42

    Google Scholar 

  • Koegler WS, Griffith LG (2004) Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response. Biomater 25(14):2819–2830

    Article  Google Scholar 

  • Kumagai Y, Doi Y (1992a) Enzymatic degradation and morphologies of binary blends of microbial poly(3-hydroxy butyrate) with poly(caprolactone), poly(1,4-butylene adipate and poly(vinyl acetate). Polym Degrad Stabil 36(3):241–248

    Google Scholar 

  • Kumagai Y, Doi Y (1992b) Enzymatic degradation of binary blends of microbial poly(3-hydroxybutyrate) with enzymatically active polymers. Polym Degrad Stabil 37(3):253–256

    Google Scholar 

  • Kumarasuriyar A, Jackson RA, Grondahl L, Trau M, Nurcombe V, Cool SM (2005) Poly(hydroxybutyrate-co-hydroxyvalerate) supports in vitro osteogenesis. Tissue Eng 11(7–8):1281–1295

    Article  Google Scholar 

  • Langer R, Vacanti J (1993) Tissue engineering. Sci 260(5110):920–926

    Article  Google Scholar 

  • Lee SJ, Lim GJ, Lee JW, Atala A, Yoo JJ (2006) In vitro evaluation of a poly(lactide-co-glycolide)-collagen composite scaffold for bone regeneration. Biomater 27(18):3466–3472

    Article  Google Scholar 

  • Liu H, Slamovich EB, Webster TJ (2006) Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. J Biomed Mater Res, Part A 78A(4):798–807

    Article  Google Scholar 

  • Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486

    Article  Google Scholar 

  • Lowry KJ, Hamson KR, Bear L, Peng YB, Calaluce R, Evans ML, Anglen JO, Allen WC (1997) Polycaprolactone/glass bioabsorbable implant in a rabbit humerus fracture model. J Biomed Mater Res 36(4):536–541

    Article  Google Scholar 

  • Lu HH, Cooper JJA, Manuel S, Freeman JW, Attawia MA, Ko FK, Laurencin CT (2005) Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomater 26(23):4805–4816

    Article  Google Scholar 

  • Lucchesi C, Ferreira B, Duek E, Santos A, Joazeiro P (2008) Increased response of vero cells to PHBV matrices treated by plasma. J Mater Sci Mater Med 19(2):635–643

    Article  Google Scholar 

  • Lutton C, Read J, Trau M (2001) Nanostructured biomaterials: a novel approach to artificial bone implants. Aust J Chem 55:621–623

    Article  Google Scholar 

  • Luzier WD (1992) Materials derived from biomass/biodegradable materials. Proc Nat Acad Sci USA 89(3):839–842

    Article  Google Scholar 

  • Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40

    Article  Google Scholar 

  • Marra KG, Szem JW, Kumta PN, DiMilla PA, Weiss LE (1999a) In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J Biomed Mater Res 47(3):324–335

    Article  Google Scholar 

  • Marra KG, Szem JW, Kumta PN, DiMilla PA, Weiss LE (1999b) Tissue-engineered bone regeneration. Nat Biotech 18(9):959–963

    Google Scholar 

  • Park JB (1979) Biomaterials: an introduction. Plenum Press, New York

    Google Scholar 

  • Park JB, Bronzino JD (2003) Biomaterials : principles and applications. CRC Press, Boca Raton

    Google Scholar 

  • Park JW, Doi Y, Iwata T (2004) Uniaxial drawing and mechanical properties of poly[(R)-3-hydroxybutyrate]/poly(l-lactic acid) blends. biomacromolecules, 5(4):1557–1566

    Google Scholar 

  • Ratner BD (2004) Biomaterials science : an introduction to materials in medicine. Elsevier Academic Press, UK

    Google Scholar 

  • Renard E, Walls M, Guérin P, Langlois V (2004) Hydrolytic degradation of blends of polyhydroxyalkanoates and functionalized polyhydroxyalkanoates. Polym Degrad Stab 85(2):779–787

    Article  Google Scholar 

  • Rose FRAJ and Oreffo ROC (2002) Bone tissue engineering: hope vs hype. Biochem Bioph Res Co 292(1):1–7

    Article  Google Scholar 

  • Schieker M, Seitz H, Drosse I, Seitz S, Mutschler W (2006) Biomaterials as scaffold for bone tissue engineering. Eur J Trauma 32(2):114–124

    Article  Google Scholar 

  • Schultz O, Sittinger M, Haeupl T, Burmester GR (2000) Emerging strategies of bone and joint repair. Arthritis Res 2(6):433–436

    Article  Google Scholar 

  • Seal BL, Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R: Reports 34(4–5):147–230

    Article  Google Scholar 

  • Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomater 23(24):4739–4751

    Article  Google Scholar 

  • Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez DJ, Stone DA et al (1999) Metabolic engineering of arabidopsis and Brassica for poly(3-hydroxybutyrate- co-3-hydroxyvalerate) copolymer production. Nat Biotech 17(10):1011–1016

    Article  Google Scholar 

  • Spitzer RS, Perka C, Lindenhayn K, Zippel H (2002) Matrix engineering for osteogenic differentiation of rabbit periosteal cells using alpha-tricalcium phosphate particles in a three-dimensional fibrin culture. J Biomed Mater Res 59(4):690–696

    Article  Google Scholar 

  • Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomater 21(5):431–440

    Article  Google Scholar 

  • Verhoogt H, Ramsay BA, Favis BD (1994) Polymer blends containing poly(3-hydroxyalkanoate)s. Polym 35(24):5155–5169

    Article  Google Scholar 

  • Wang M (2004) Biomaterials and tissue engineering. In: Shi DL (ed) Biological and medical physics, biomedical engineering, Springer, Heidelberg, 11, p 246

    Google Scholar 

  • Yaszemski MJ (2004) Biomaterials in orthopedics. M. Dekker, New York

    Google Scholar 

  • Yoon JS, Chang MC, Kim MN, Kang EJ, Kim C, Chin IJ (1996) Compatibility and fungal degradation of poly[(R)-3-hydroxybutyrate]/aliphatic copolyester blend. J Polym Sci Part B: Polym Phy 34(15):2543–2551

    Article  Google Scholar 

  • Yu L (2009) Biodegradable polymer blends and composites from renewable resources. Wiley, Hoboken

    Google Scholar 

  • Zeltinger J, Sherwood JK, Graham DA, Mueller R, Griffith LG (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7(5):557–572

    Article  Google Scholar 

  • Zhao J, Yuan X, Cui Y, Ge Q, Yao K (2004) Preparation and characterization of poly(L-lactide)/poly(caprolactone) fibrous scaffolds for cartilage tissue engineering. J Appl Polym Sci 91(3):1676–1684

    Article  Google Scholar 

  • Zhou WY (2007) Selective laser sintering of Poly (L-Lactide)/carbonated hydroxyapatite porous scaffolds for bone tissue engineering. Mech Eng, The University of Hong Kong, PhD Thesis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naznin Sultana .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Sultana, N. (2013). Scaffolds for Tissue Engineering. In: Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering. SpringerBriefs in Applied Sciences and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34802-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34802-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34801-3

  • Online ISBN: 978-3-642-34802-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics