Skip to main content

Do We Know How to Integrate?

  • Conference paper
Modeling Decisions for Artificial Intelligence (MDAI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7647))

  • 1030 Accesses

Abstract

After a short history of integration on real line, some examples of optimization tasks are given to illustrate the philosophy behind some types of integrals with respect to monotone measures and related to the standard arithmetics on real line. Basic integrals are then described both in discrete case and general case. A general approach to integration known as universal integrals is recalled, and introduced types of integrals as universal integrals are discussed. A special stress is given to copula–based universal integrals. Several types of integrals based on arithmetics different from the standard one are given, too. Finally, some concluding remarks are added.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benvenuti, P., Mesiar, R., Vivona, D.: Monotone set functions-based integrals. In: Pap, E. (ed.) Handbook of Measure Theory, vol. II, ch. 33, pp. 1329–1379. Elsevier Science, Amsterdam (2002)

    Chapter  Google Scholar 

  2. Event, Y., Lehrer, E.: Decomposition-Integral: Unifying Choquet and the Concave Integrals (preprint)

    Google Scholar 

  3. Grabisch, M.: Fuzzy integral in multicriteria decision making. Fuzzy Sets and Systems 69, 279–298 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953 - 1954)

    Google Scholar 

  5. Klement, E.P., Mesiar, R., Pap, E.: A Universal Integral as Common Frame for Choquet and Sugeno Integral. IEEE Transactions on Fuzzy Systems 18(1), 178–187 (2010)

    Article  Google Scholar 

  6. Klement, E.P., Mesiar, R.: Discrete integrals and axiomatically defined functionals. Axioms 1 (2012), doi:10.3390/axioms 1010009, 9–20

    Google Scholar 

  7. Lebesgue, H.: Leçons sur l’intégration et la recherche des fonctions primitives. Gauthier–Villars, Paris (1904)

    Google Scholar 

  8. Lehrer, E.: A new integral for capacities. Econom. Theory 39, 157–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mesiar, R.: Choquet-like integrals. J. Math. Anal. Appl. 194, 477–488 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mesiar, R., Mesiarová-Zemánková, A.: The ordered modular averages. IEEE Trans. Fuzzy Systems 19, 42–50 (2011)

    Article  Google Scholar 

  11. Mesiar, R., Li, J., Pap, E.: Discrete pseudo-integrals. Int. J. Approximate Reasoning (in press)

    Google Scholar 

  12. Narukawa, Y., Torra, V.: Generalized transformed t–conorm and multifold integral. Fuzzy Sets and Systems 157, 1354–1392 (2006)

    Article  MathSciNet  Google Scholar 

  13. Narukawa, Y., Torra, V.: Multidimensional generalized fuzzy integral. Fuzzy Sets and Systems 160, 802–815 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nelsen, R.B.: An introduction to copulas, 2nd edn. Springer Series in Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  15. Riemann, B.: Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe. Habilitation Thesis, University of Göttingen (1854)

    Google Scholar 

  16. Schmeidler, D.: Integral representation without additivity. Proc. Amer. Math. Soc. 97, 255–261 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shilkret, N.: Maxitive measure and integration. Indag. Math. 33, 109–116 (1971)

    MathSciNet  Google Scholar 

  18. Chae, S.B.: Lebesgue integration. Marcel Dekker, Inc., New York (1980)

    Google Scholar 

  19. Stupňanová, A.: A Note on Decomposition Integrals. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part IV. CCIS, vol. 300, pp. 542–548. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Sugeno, M.: Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology (1974)

    Google Scholar 

  21. Vitali, G.: Sulla definizione di integrale delle funzioni di una variabile. Ann. Mat. Pura ed Appl. IV 2, 111–121 (1925)

    Article  MathSciNet  Google Scholar 

  22. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Systems Man Cybernet. 18, 183–190 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, Q.: The pan-integral on fuzzy measure space. Fuzzy Mathematics 3, 107–114 (1985) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mesiar, R. (2012). Do We Know How to Integrate?. In: Torra, V., Narukawa, Y., López, B., Villaret, M. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2012. Lecture Notes in Computer Science(), vol 7647. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34620-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34620-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34619-4

  • Online ISBN: 978-3-642-34620-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics