Skip to main content

On the Stable Degree of Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7551))

Included in the following conference series:

  • 939 Accesses

Abstract

We define the stable degree s(G) of a graph G by s(G) =  min U max v ∈ U d G (v), where the minimum is taken over all maximal independent sets U of G. For this new parameter we prove the following. Deciding whether a graph has stable degree at most k is NP-complete for every fixed k ≥ 3; and the stable degree is hard to approximate. For asteroidal triple-free graphs and graphs of bounded asteroidal number the stable degree can be computed in polynomial time. For graphs in these classes the treewidth is bounded from below and above in terms of the stable degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods 8, 277–284 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations II. Lower bounds. Information & Computation 209, 1103–1119 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouchitté, V., Todinca, I.: Approximating the treewidth of AT-free graphs. Discrete Applied Mathematics 131, 11–37 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouchitté, V., Kratsch, D., Müller, H., Todinca, I.: On treewidth approximations. Discrete Applied Mathematics 136, 183–196 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Broersma, H.-J., Kloks, T., Kratsch, D., Müller, H.: Independent sets in asteroidal triple-free graphs. SIAM Journal on Discrete Mathematics 12, 276–287 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Broersma, H.-J., Kloks, T., Kratsch, D., Müller, H.: A generalization of AT-free graphs and a generic algorithm for solving triangulation problems. Algorithmica 32, 594–610 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM Journal on Discrete Mathematics 10, 399–430 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Courcelle, B.: The monadic second-order logic of graphs. III: Tree-decompositions, minors and complexity issues. RAIRO. Informatique Théorique et Applications 26, 257–286 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems 33, 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum fill-in of asteroidal triple-free graphs. Theoretical Computer Science 175, 309–335 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kloks, T., Kratsch, D., Müller, H.: On the structure of graphs with bounded asteroidal number. Graphs and Combinatorics 17, 295–306 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kratsch, D.: Domination and total domination on asteroidal triple-free graphs. Discrete Applied Mathematics 99, 111–123 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fundamenta Mathematicae 51, 45–64 (1962)

    MathSciNet  MATH  Google Scholar 

  14. Möhring, R.H.: Triangulating graphs without asteroidal triples. Discrete Applied Mathematics 64, 281–287 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ramachandramurthi, S.: A Lower Bound for Treewidth and its Consequences. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 14–25. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  16. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Applied Mathematics 8, 85–89 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Müller, H. (2012). On the Stable Degree of Graphs. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2012. Lecture Notes in Computer Science, vol 7551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34611-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34611-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34610-1

  • Online ISBN: 978-3-642-34611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics