Skip to main content
  • 2174 Accesses

Abstract

The problems of environmental and energy crisis in the world are serious and pressing, which cause many countries to spend billions of dollars on research to produce clean energy. Among these novel energies, solar energy is a kind of clean energy and a solution to the energy crisis. The International Energy Agency said that “the development of affordable, inexhaustible and clean solar energy technologies will have huge long-term benefits. It will increase countries’ energy security reliance on an indigenous, inexhaustible and mostly import-independent resource” [1]. Many nations have put forward proposals to use solar energy. For example, the so-called Solar Roofs Plan in the USA and Germany began in 1996. Japan especially paid attention to the real applications of solar energy. “New Sunshine Project” started in 1993, and the incentive program “Residential PV System Dissemination Program” began in 1994 [2]. China has also taken effective measures to promote the development of solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Solar energy perspectives. http://www.iea.org/. Accessed 2 Mar 2012

  2. Kurokawa K, Ikki O (2001) Residential PV system dissemination program. Sol Energy 70:457–466

    Article  Google Scholar 

  3. Green MA (2004) Third generation photovoltaics: advanced solar energy conversion. Springer, Heidelberg

    Google Scholar 

  4. Brown GF, Wu JQ (2008) Third generation photovoltaics. Laser Photonics Rev 3:394–405

    Article  Google Scholar 

  5. Soga T (2006) Nanostructured materials for solar energy conversion. Elsevier, Amsterdam

    Google Scholar 

  6. Nelson J (2003) The physics of solar cell. Imperial College, London

    Book  Google Scholar 

  7. Li JH, Yu HY, Wong SM, Li XC, Zhang G (2009) Design guidelines of periodic Si nanowire arrays for solar cell. Appl Phys Lett 95:243113–243115

    Article  Google Scholar 

  8. Marin A, Stephan S, Dietrich H (2008) Energy harvesting using nanowires? Adv Mater 20:4021–4026

    Article  Google Scholar 

  9. Maiolo JR, Kayes BM, Filler MA, Putnam MC, Kelzenberg MD, Atwater HA, Lewis NS (2007) High aspect ratio silicon wire array photoelectrochemical cells. J Am Chem Soc 129:12346–12347

    Article  Google Scholar 

  10. Jackson JD (1998) Classical electrodynamics. Wiley, New York

    Google Scholar 

  11. Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method. Artech House, Boston

    MATH  Google Scholar 

  12. Hauser H, Berger P, Michl B, Müller C, Schwarzkopf S, Hermle M, Bläsi B (2010) Nanoimprint lithography for solar cell texturisation. Proc SPIE 7716:77160X-1-9

    Google Scholar 

  13. Zhu J, Hsu CM, Yu ZF, Fan SH, Cui Y (2010) Nanodome solar cells with efficient light management and self-cleaning. Nano Lett 10:1979–1984

    Article  Google Scholar 

  14. Zhu J, Yu Z, Burkhard GF, Hsu CM, Connor ST, Xu Y, Wang Q, McGehee M, Fan S, Cui Y (2009) Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett 9:279–282

    Article  Google Scholar 

  15. Sun CH, Jiang P, Jiang B (2008) Broadband moth-eye antireflection coatings on silicon. Appl Phys Lett 92:061112–061114

    Article  Google Scholar 

  16. Chen Q, Hubbard G, Shields PA, Liu C, Allsopp DWE, Wang NW, Abbott S (2009) Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting. Appl Phys Lett 94:263118–263120

    Article  Google Scholar 

  17. Deniz H, Khudiyev T, Buyukserin F, Bayindir M (2011) Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces. Appl Phys Lett 99:183107-1-3

    Article  Google Scholar 

  18. Gregg BA, Hanna MC (2003) Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. J Appl Phys 93:3605–3614

    Article  Google Scholar 

  19. Liao KS, Yambem SD, Haldar A, Alley NJ, Curran SA (2010) Designs and architectures for the next generation of organic solar cells. Energies 3:1212–1250

    Article  Google Scholar 

  20. Tvingstedt K (2008) Light trapping and alternative electrodes for organic photovoltaic devices. Dissertation, Linköping University

    Google Scholar 

  21. Fan ZY, Razavi H, Do JW, Moriwaki A, Ergen O, Chueh YL, Leu PW, Ho JC, Takahashi T, Reichertz LA, Neale S, Yu K (2009) Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater 8:648–653

    Article  Google Scholar 

  22. Peng KQ, Wang X, Li L, Wu XL, Lee ST (2010) High-performance silicon nanohole solar cells. J Am Chem Soc 132:6872–6873

    Article  Google Scholar 

  23. Hu L, Chen G (2007) Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett 7:3249–3252

    Article  Google Scholar 

  24. Chen CK, de Castro ARB, Shen YB (1981) Surface-enhanced second-harmonic generation. Phys Rev Lett 46:145–148

    Article  Google Scholar 

  25. García-Vidal FJ, Pendry JB (1996) Collective theory for surface enhanced Raman scattering. Phys Rev Lett 77:1163–1166

    Article  Google Scholar 

  26. Ajmal KM, Huang H, Shanker B, Timothy H (2008) Surface plasmon structures for surface-enhanced raman scattering. Mater Res Soc Symp Proc 1055:45–52

    Google Scholar 

  27. Kruszewski S (2006) Surface enhanced Raman scattering phenomenon. Cryst Res Technol 41:562–569

    Article  Google Scholar 

  28. Yang Y, Shi JL, Tanaka T, Nogami M (2007) Self-assembled silver nanochains for surface-enhanced Raman scattering. Langmuir 23:12042–12047

    Article  Google Scholar 

  29. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  Google Scholar 

  30. Ko DH, Tumbleston JR, Gadisa A, Aryal M, Liu YC, Lope RN, Samulski ET (2011) Light-trapping nano-structures in organic photovoltaic cells. J Mater Chem 21:16293–16303

    Article  Google Scholar 

  31. Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energ Mat Sol C 94:1481–1486

    Article  Google Scholar 

  32. Creighton JA, Eadon DG (1991) Ultra-visible absorption spectra of the colloidal elements. J Chem Soc 87:3881–3891

    Google Scholar 

  33. Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113–191115

    Article  Google Scholar 

  34. Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904–121906

    Article  Google Scholar 

  35. Tvingstedt K, Persson NK, Inganäs O, Rahachou A, Zozoulenko IV (2007) Surface plasmon increase absorption in polymer photovoltaic cells. Appl Phys Lett 91:113514–113516

    Article  Google Scholar 

  36. Na SI, Kim SS, Jo J, Oh SH, Kim J, Kim DY (2008) Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography. Adv Funct Mater 18:3956–3963

    Article  Google Scholar 

  37. Kang MG, Xu T, Park HJ, Luo XG, Guo LG (2010) Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes. Adv Mater 22:4378–4383

    Article  Google Scholar 

  38. Murdoch GB (2010) Transparent conductive oxides for organic electronics. Dissertation, University of Toronto

    Google Scholar 

  39. Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20:S35

    Article  Google Scholar 

  40. Battaglia C, Escarre J, So K et al (2011) Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells. Nat Photonics 21:1–4

    Google Scholar 

  41. Hong S, Myung S (2007) Nanotube electronics: a flexible approach to mobility. Nat Nanotechnol 2:207–208

    Article  Google Scholar 

  42. Zhang DH, Ryu K, Liu XL, Polikarpov E, Ly J, Tompson ME, Zhou CW (2006) Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 6:1880–1886

    Article  Google Scholar 

  43. Zheng QB, Ip WH, Lin XY, Yousefi NM, Young KK, Li ZG, Kim JK (2011) Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir Blodgett Assembly. ACS Nano 5:6039–6051

    Article  Google Scholar 

  44. Wu JB, Becerril HA, Bao ZN, Liu ZF, Chen YS, Peumans P (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302–263304

    Article  Google Scholar 

  45. Kim BJ, Mastro MA, Hite J, Eddy CR (2010) Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes. Opt Express 18:23030–23034

    Article  Google Scholar 

  46. Bae S, Kim H, Lee YB, Xu XF et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578

    Article  Google Scholar 

  47. Madaria AR, Kumar A, Zhou CW (2011) Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 22:245201–245206

    Article  Google Scholar 

  48. Kang MG, Kim MSJ, Kim JS, Guo LJ (2008) Organic solar cells using nanoimprinted transparent metal electrodes. Adv Mater 20:4408–4413

    Article  Google Scholar 

  49. Kanga MG, Parkb HJ, Ahnc SH, Guo LJ (2010) Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells. Sol Energ Mat Sol C 94:1179–1184

    Article  Google Scholar 

  50. Catrysse PB, Fan SH (2010) Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices. Nano Lett 10:2944–2949

    Article  Google Scholar 

  51. Niggemann M, Glatthaar M, Lewer P, Müller C, Wagner J, Gombert A (2006) Functional microprism substrate for organic solar cells. Thin Solid Films 511–512:628–633

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, W. (2013). Application of NIL in Solar Cell. In: Nanoimprint Lithography: An Enabling Process for Nanofabrication. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34428-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34428-2_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34427-5

  • Online ISBN: 978-3-642-34428-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics