Skip to main content

Bubbly Magma State Dynamics at Explosive Character of Decompression

  • Chapter
Bubble Dynamics and Shock Waves

Part of the book series: Shock Wave Science and Technology Reference Library ((SHOCKWAVES,volume 8))

  • 3437 Accesses

Abstract

The unsteady high-velocity flows formed in a magmatic melt under decompression and accompanied by phase transitions determine the dynamics and structure of eruptions of explosive volcanic systems and are related to the multi-parametric and interrelated processes. Their investigation was carried out on the base of multi-phase mathematical model which includes the full system of kinetics equations. Numerical analysis of a magma state dynamics has shown that the bubble dynamics in the cavitating melt takes a collective character and that the diffusion of dissolved gas from a melt plays the key role in the formation of decompression waves. Two cases were distinguished: one for which the diffusion flux determines only the nucleation process (the gas mass inside the bubbles is practically permanent) and another one where this restriction is omitted. In the first case, the decompression wave front takes a classical smooth form (approximately 100 m wide). In the second case, the decompression wave structure and the melt state behind the saturation front turn out to be principally different. The jumps in the mass velocity and viscosity practically left out the pressure inside the cavitation bubbles unchanged for a long time in spite of their growth where intense gas diffusion is observed. It was shown that, if nuclei density was increased at the expense of micro-crystallites, a wave precursor and the system of discrete zones of saturation in its field were formed. The results of the experimental simulation of the structure of the gas saturated flow erupted from a channel and of the effect of magmatic “bombs” flux formation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kedrinskii, V.K.: About gas-dynamic signs of explosive eruptions of volcanoes. I. Hydrodynamic analogs of pre-eruption volcano state, dynamics of three-phase magma state in a decompression waves. J. AMTP 49(6), 3–12 (2008)

    Google Scholar 

  2. Kedrinskii, V.K.: The experimental research and hydrodynamic models of a ”sultan”. Arch. Mech. 26(3/4), 535–540 (1974)

    Google Scholar 

  3. Kedrinskii, V.K.: Hydrodynamics of Explosion: Experiments and Models. Springer (2005)

    Google Scholar 

  4. Kedrinskii, V.K.: Nonlinear problems of cavitative disintegration of liquid under explosive loading. J. AMTP 34(3), 74–91 (1993)

    Google Scholar 

  5. The Physics of Explosive Volcanic Eruptions, vol. 145. Geolog. Soc. Spec. Publ. (1998)

    Google Scholar 

  6. Eichelberger, J., Gordeev, E., Koyaguchi, T.A.: Russian-Japan-US Partnership to understand explosive volcanism. Internet Archive Wayback Machine, 1–4 (2006), http://www.uaf.edu/geology/PIRE/PIRE.pdf

  7. Woods, A.W.: The dynamics of explosive volcanic eruptions. Rev. Geophys. 33(4), 495–530 (1995)

    Article  MathSciNet  Google Scholar 

  8. Dobran, F.: Non-equilibrium flow in volcanic conduits and application of the eruption of Mt. St. Helens on May 18 1980 and Vesuvius in Ad.79. J. Volcanol. Geotherm. Res. 49, 285–311 (1992)

    Article  Google Scholar 

  9. Glass, I.I., Heuckroth, L.E.: Hydrodynamic shock tube. Phys. Fluids 6(4), 543–549 (1963)

    Article  MATH  Google Scholar 

  10. Vorotnikova, M.I., Kedrinskii, V.K., Soloukhin, R.I.: Shock tube for study of 1D waves in a liquid. J. Combustion Explosion and Shock Waves 1, 5–15 (1965)

    Google Scholar 

  11. Besov, A.S., Kedrinskii, V.K., Pal’chikov, E.I.: Study of initial stage of cavitation using diffraction-optical method. Pis’ma ZhTF 10(4), 240–244 (1984)

    Google Scholar 

  12. Iordanskii, S.V.: Equations of motion of a liquid containing gas bubbles. J. Prikl. Mekh. Tekh. Fiz. 3, 102–110 (1960)

    Google Scholar 

  13. Kogarko, B.S.: One model of a cavitating liquid. Dokl. Akad. Nauk SSSR 137(6), 1331–1333 (1961)

    MathSciNet  Google Scholar 

  14. Van Wijngaarden, L.: On the equations of motion for mixtures of liquid and gas bubbles. J. Fluid Mech. 33, 465–474 (1968)

    Article  MATH  Google Scholar 

  15. Kedrinskii, V.K.: Dynamics of the cavitation zone during an underwater explosion near a free surface. J. Appl. Mech. Tech. Phys. 16(5), 724–733 (1975)

    Article  Google Scholar 

  16. Trevena, D.H.: Cavitation and Tension in Liquids. Hilter, Bristol Philadelphia (1987)

    Google Scholar 

  17. Hansson, I., Kedrinskii, V.K., Morch, K.: On the dynamics of cavity cluster. J. Phys. D Applied Physics 15, 1725–1734 (1982)

    Article  Google Scholar 

  18. Papale, P., Neri, A., Macedorio, G.: The role of magma composition and water content in explosive eruptions. 1. Conduit ascent dynamics. J. Volcanol. Geotherm. Res. 87, 75–93 (1998)

    Article  Google Scholar 

  19. Persikov, E.S.: The viscosity of magmatic liquids: Experiment, generalized patterns. A model for calculation and prediction. Applications. Physical Chemistry of Magmas. Advances in Physical Geochemistry, vol. 9, pp. 1–40. Springer, New York (1991)

    Google Scholar 

  20. Manga, M., Gonnermann, H.M., Namiki, A.: Why do volcanoes (only sometimes) erupt explosively? In: Canad. Geophys. Union and Amer. Geophys. Union Meeting, Montreal, May 17-21 (2004)

    Google Scholar 

  21. Mader, H.: Conduit flow and fragmentation. In: Gilbert, J.S., Sparks, R.S. (eds.) The Physics of Explosive Volcanic Eruption, vol. 145, pp. 51–71. Geological Society of London Special Publication (1998)

    Google Scholar 

  22. Navon, O., Lyakhovsky, V.: Vesiculation processes in silicic magma. In: Gilbert, J.S., Sparks, R.S. (eds.) The Physics of Explosive Volcanic Eruption, vol. 145, pp. 27–50. Geological Society of London Special Publication (1998)

    Google Scholar 

  23. Melnik, O.E., Sparks, R.S.J.: Nonlinear dynamics of lava dome extrusion. Nature 402(4), 37–41 (1999)

    Google Scholar 

  24. Barmin, A.A., Melnik, O.E.: Hydrodynamics of volcanic eruptions. Usp. Mekhaniki 1, 32–60 (2002)

    Google Scholar 

  25. Alidibirov, M., Dingwell, D.: Magma fragmentation by rapid decompression. Nature 380, 146–148 (1996)

    Article  Google Scholar 

  26. Hurwitz, S., Navon, O.: Bubble nucleation in rhyolitic melts: experiments at high pressure, temperature, and water content. Earth Planet. Sci. Lett. 122, 267–280 (1994)

    Article  Google Scholar 

  27. Lyakhovsky, V., Hurwitz, S., Navon, O.: Bubble growth in rhyolitic melts: Experimental and numerical investigation. Bull. Volcanol. 58(1), 19–32 (1996)

    Article  Google Scholar 

  28. Navon, O., Chekhmir, A., Lyakhovsky, V.: Bubble growth in highly viscous melts: Theory, experiments, and autoexplosivity of dome lavas. Earth Planet. Sci. Lett. 160, 763–776 (1998)

    Article  Google Scholar 

  29. Proussevitch, A.A., Sahagian, D.L.: Dynamics of coupled diffusive and decompressive bubble growth in magmatic systems. J. Geophys. Res. 101(8), 447–456 (1996)

    Article  Google Scholar 

  30. Namiki, A., Manga, M.: Importance of preexisting bubbles for volcano explosivity. Canad. Geophys. Union and Amer. Geophys. Union Meeting, Montreal, May 17-21 (2004)

    Google Scholar 

  31. Proussevich, A.A., et al.: Dynamics of diffusive bubble growth in magmas: isothermal case. J. Geophys. Res. 98, 283–307 (1993)

    Google Scholar 

  32. Lezhnin, S.I., Pribaturin, N.A., Sorokin, A.L.: Formation and growth of bubbles in a water-saturated magma. In: Proceedings of All Russian Workshop on Acoustical Heterogeneous Media; J. of Dynamics of Continuous Media, Inst. Hydrodynamics, Sib. Div., Russian Acad. of Sci. 123, 97–106 (2005) (in Russian)

    Google Scholar 

  33. Kedrinskii, V.K.: Gas-dynamic signs of explosive eruptions of volcanoes. 2. Model of homogeneous-heterogeneous nucleation. Specific features of destruction of the cavitating magma. J. Appl. Mech. Tech. Phys. 50(2), 309–317 (2009)

    Article  Google Scholar 

  34. Kedrinskii, V.K., Davydov, M.N., Chernov, A.A., Takayama, K.: Initial stage of the explosive eruption of volcanoes: magma state dynamics in unloading waves. Dokl. Ross. Akad. Nauk. 407(2), 190–193 (2006)

    Google Scholar 

  35. Chernov, A.A., Kedrinskii, V.K., Davydov, M.N.: Spontaneous nucleation of bubbles in a gas-saturated melt under instantaneous decompression. J. Appl. Mech. Tech. Phys. 45(2), 281–285 (2004)

    Article  Google Scholar 

  36. Hill, D.P., Pollitz, F., Newhall, C.: Phys. Today 55(11), 41 (2002)

    Google Scholar 

  37. Kedrinskii, V., et al.: In: Proceedings of the 5th International Symposium on Cavitation (CAV 2003), Osaka, Japan, pp. 1–7, Paper No. CAV-03GS-4-404 (2003)

    Google Scholar 

  38. Davydov, M.N., Kedrinskii, V.K., Chernov, A.A., Takayama, K.: Prikl. Mekh. Tekh. Fiz. 46, 71 (2005)

    MATH  Google Scholar 

  39. Stolper, E.: Contrib. Mineral. Petrol. 2(81), 1 (1982)

    Article  Google Scholar 

  40. Proussevitch, A.A., Sahagian, D.L.: J. Geophys. Res. B 103(8), 18223 (1998)

    Article  Google Scholar 

  41. Chernov, A.A.: Prikl. Mekh. Tekh. Fiz. 44(5), 80 (2003)

    MATH  Google Scholar 

  42. Kedrinskii, V.K., Plaksin, S.: Rarefaction wave structure in a cavitating liquid. In: Kedrinskii, V.K. (ed.) Problems of Nonlinear Acoustics: Proc. of IUPAP-IUTAM Symposium on Nonlinear Acoustics Part 1, Novosibirsk (1987)

    Google Scholar 

  43. Besov, A.S., Kedrinskii, V.K., Pal’chikov, E.I.: Investigation of initial stage of cavitation by diffraction optical technique. Pis’ma ZhTF 10(4) (1984)

    Google Scholar 

  44. Berngardt, A.R., Kedrinskii, V.K., Pal’chikov, E.I.: Zh. Prikl. Mekh. i Tekh. Fiz. 36, 2 (1995)

    Google Scholar 

  45. Berngardt, A.R.: Dynamics of the cavitation zone under impulsive loading of a Liquid. PhD Thesis, Novosibirsk (1995)

    Google Scholar 

  46. Berngardt, A., Bichenkov, E., Kedrinskii, V., Pal’chikov, E.: Optic and x-ray investigation of water fracture in rarefaction wave at later stages. In: Pichal, M. (ed.) Proc. IUTAM Symp. on Optical Methods in the Dynamics of Fluids and Solids. Springer, Heidelberg (1985)

    Google Scholar 

  47. Kedrinskii, V.K.: Dynamics of ”collective” bubble in a magma melt flow behind the decompression wave front. J. Appl. Mech. Tech. Phys. 52(3) (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery K. Kedrinskii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kedrinskii, V.K., Takayama, K. (2013). Bubbly Magma State Dynamics at Explosive Character of Decompression. In: Delale, C. (eds) Bubble Dynamics and Shock Waves. Shock Wave Science and Technology Reference Library, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34297-4_12

Download citation

Publish with us

Policies and ethics