Skip to main content

Upper Bounds for Adversaries’ Utility in Attack Trees

  • Conference paper
Decision and Game Theory for Security (GameSec 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7638))

Included in the following conference series:

Abstract

Attack trees model the decision making process of an adversary who plans to attack a certain system. Attack-trees help to visualize possible attacks as Boolean combinations of atomic attacks and to compute attack-related parameters such as cost, success probability and likelihood. The known methods of estimating adversarie’s utility are of high complexity and set many unnatural restrictions on adversaries’ behavior. Hence, their estimations are incorrect—even if the computed utility is negative, there may still exist beneficial ways of attacking the system. For avoiding unnatural restrictions, we study fully adaptive adversaries that are allowed to try atomic attacks in arbitrary order, depending on the results of the previous trials. At the same time, we want the algorithms to be efficient. To achieve both goals, we do not try to measure the exact utility of adversaries but only upper bounds. If adversaries’ utility has a negative upper bound, it is safe to conclude that there are no beneficial ways of attacking the system, assuming that all reasonable atomic attacks are captured by the attack tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational Choice of Security Measures Via Multi-parameter Attack Trees. In: López, J. (ed.) CRITIS 2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Buldas, A., Mägi, T.: Practical Security Analysis of E-Voting Systems. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 320–335. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Convery, S., Cook, D., Franz, M.: An attack tree for the Border Gateway Protocol (2004)

    Google Scholar 

  4. Downs, D.D., Haddad, R.: Penetration testing—the gold standard for security rating and ranking. In: Proceedings of the 1st Workshop on Information-Security-System Rating and Ranking (WISSRR), Williamsburg, Virginia, USA (2001)

    Google Scholar 

  5. Edge, K.S.: A framework for analyzing and mitigating the vulnerabilities of complex systems via attack and protection trees. Ph.D. thesis, Air Force Institute of Technology, Ohio (2007)

    Google Scholar 

  6. Ericson, C.: Fault tree analysis—a history. In: The 17th International System Safety Conference (1999)

    Google Scholar 

  7. Jürgenson, A., Willemson, J.: Serial Model for Attack Tree Computations. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 118–128. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Jürgenson, A., Willemson, J.: Computing Exact Outcomes of Multi-parameter Attack Trees. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 1036–1051. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Niitsoo, M.: Optimal Adversary Behavior for the Serial Model of Financial Attack Trees. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010. LNCS, vol. 6434, pp. 354–370. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Schneier, B.: Attack trees: Modeling security threats. Dr. Dobbs Journal 24(12), 21–29 (1999)

    Google Scholar 

  12. Schudel, G., Wood, B.: Adversary Work Factor As a Metric for Information Assurance. In: Proceedings of the 2000 Workshop on New Security Paradigms, Ballycotton, County Cork, Ireland, pp. 23–30 (2000)

    Google Scholar 

  13. Weiss, J.D.: A system security engineering process. In: Proc. of the 14th National Computer Security Conf., pp. 572–581 (1991)

    Google Scholar 

  14. Wood, B., Bouchard, J.: Read team work factor as a security measurement. In: Proc. of the 1st Workshop on Information-Security-System Rating and Ranking (WISSRR 2001), Williamsburg, Virginia, USA (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buldas, A., Stepanenko, R. (2012). Upper Bounds for Adversaries’ Utility in Attack Trees. In: Grossklags, J., Walrand, J. (eds) Decision and Game Theory for Security. GameSec 2012. Lecture Notes in Computer Science, vol 7638. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34266-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34266-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34265-3

  • Online ISBN: 978-3-642-34266-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics