Skip to main content

Segmentation and Skeletonization on Arbitrary Graphs Using Multiscale Morphology and Active Contours

  • Chapter
  • First Online:
Innovations for Shape Analysis

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 3133 Accesses

Abstract

In this chapter we focus on formulating and implementing on abstract domains such as arbitrary graphs popular methods and techniques developed for image analysis, in particular multiscale morphology and active contours. To this goal we extend existing work on graph morphology to multiscale dilation and erosion and implement them recursively using level sets of functions defined on the graph’s nodes. We propose approximations to the calculation of the gradient and the divergence of vector functions defined on graphs and use these approximations to apply the technique of geodesic active contours for object detection on graphs via segmentation. Finally, using these novel ideas, we propose a method for multiscale shape skeletonization on arbitrary graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Ration. Mech. 123(2), 199–257 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arcelli, C., Sanniti di Baja, G., Serino, L.: Distance-driven skeletonization in voxel images. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 709–720 (2011)

    Google Scholar 

  3. Aslan, C., Erdem, A., Erdem, E., Tari, S.: Disconnected skeleton: shape at its absolute scale. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2188–2203 (2008)

    Article  Google Scholar 

  4. Bensoussan, A., Menaldi, J.: Difference equations on weighted graphs. J. Convex Anal. 12(1), 13–44 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Blum, H.: A transformation for extracting new descriptors of shape. In: Proceedings of a Symposium on Models for the Perception of Speech and Visual Forms, Boston, Nov. 1964. MIT, Cambridge MA (1967)

    Google Scholar 

  6. Borgefors, G., Nyström, I., Sanniti di Baja, G.: Discrete skeletons from distance transforms in 2D and 3D. In: Siddiqi, K., Pizer, S. (eds.) Medial Representations: Mathematics, Algorithms and Applications. Springer, Dordrecht (2008)

    Google Scholar 

  7. Boykov, Y., Kolmogorov, V.: An experimental comparison of Min-Cut/Max-Flow Algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  8. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  9. Breuß, M., Weickert, J.: A shock-capturing algorithm for the differential equations of Dilation and Erosion. J. Math. Imaging Vis. 25, 187–201 (2006)

    Article  Google Scholar 

  10. Breuß, M., Weickert, J.: Highly accurate schemes for PDE-based morphology with general convex structuring elements. Int. J. Comput. Vis. 92(2), 132–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphological filtering. IEEE Trans. Signal Process. 42(12), 3377–3386 (1994)

    Article  Google Scholar 

  12. Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66(1), 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  14. Chung, S.-Y., Berenstein, C.A.: Omega-Harmonic functions and inverse conductivity problems on networks. SIAM J. Appl. Math. 65, 1200–1226 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

    Article  Google Scholar 

  16. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watershed: a unifying graph-based optimization framework. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1384–1399 (2011)

    Article  Google Scholar 

  17. Cousty, J., Najman, L., Serra, J.: Some morphological operators in graph spaces. In: Proceedings of the International Symposium on Mathematical Morphology. Lecture Notes in Computer Science, 5720. Springer, Berlin/New York (2009)

    Google Scholar 

  18. Hassouna, M.S., Farag, A.A.: Variational curve skeletons using gradient vector flow. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2257–2274 (2009)

    Article  Google Scholar 

  19. Heijmans, H.J.A.M.: Morphological Image Operators. Academic, Boston (1994)

    MATH  Google Scholar 

  20. Heijmans, H.J.A.M., Nacken, P., Toet, A., Vincent, L.: Graph morphology. J. Vis. Commun. Image Represent. 3(1), 24–38 (1992)

    Article  Google Scholar 

  21. Heijmans, H.J.A.M., Vincent, L.: Graph morphology in image analysis. In: Dougherty, E.R. (ed.) Mathematical Morphology in Image Processing. Marcel Dekker, New York (1993)

    Google Scholar 

  22. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  23. Kimia, B., Tannenbaum, A., Zucker, S.: On the evolution of curves via a function of curvature. I. The classical case. J. Math. Anal. Appl. 163, 438–458 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Komodakis, N., Paragios, N., Tziritas, G.: MRF energy minimization and beyond via dual decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 33, 531–552 (2011)

    Article  Google Scholar 

  25. Kresch, R., Malah, D.: Skeleton-based morphological coding of binary images. IEEE Trans. Image Process. 7(10), 1387–1399 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lantuejoul, C.: Skeletonization in quantitative metallography. In: Haralick, R.M., Simon, J.C. (eds.) Issues of Digital Image Processing. Sijthoff and Noordhoff, Groningen (1980)

    Google Scholar 

  27. Malladi, R., Sethian, J.A., Vemuri, B.C.: A Fast Level Set based Algorithm for Topology-Independent Shape Modeling. J. Math. Imaging Vis. 6, 269–289 (1996)

    Article  MathSciNet  Google Scholar 

  28. Maragos, P.: Pattern spectrum and multiscale shape representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 701–716 (1989)

    Article  MATH  Google Scholar 

  29. Maragos, P., Schafer, R.W.: Morphological skeleton representation and coding of binary images. IEEE Trans. Acoust. Speech Signal Process. 34, 1228–1244 (1986)

    Article  Google Scholar 

  30. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  31. McInerney, T., Terzopoulos, D.: Topologically adaptable snakes. In: Proceedings of the Int’l Conference on Computer Vision, pp. 840–845 (1995)

    Google Scholar 

  32. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pizer, S.M., Siddiqi, K., Székely, G., Damon, J.N., Zucker, S.W.: Multiscale medial loci and their properties. Int. J. Comput. Vis. 55(2/3), 155–179 (2003)

    Article  Google Scholar 

  34. Rosenfeld, A., Kak, A.C.: Digital Picture Processing: Vol I and II. Academic, New York/London/Paris (1982)

    Google Scholar 

  35. Sapiro, G., Kimmel, R., Shaked, D., Kimia, B., Bruckstein, A.: Implementing continuous-scale morphology via curve evolution. Pattern Recognit. 26(9), 1363–1372 (1993)

    Article  Google Scholar 

  36. Serra, J.: Image Analysis and Mathematical Morphology. Academic, London/New York (1982)

    MATH  Google Scholar 

  37. Serra, J. (ed.): Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances. Academic, London/New York (1988)

    Google Scholar 

  38. Siddiqi, K., Buix, S., Tannenbaum, A., Zucker, W.: Hamilton-Jacobi skeletons. Int. J. Comput. Vis. 48(3), 215–231 (2002)

    Article  MATH  Google Scholar 

  39. Ta, V.-T., Elmoataz, A., Lézoray, O.: Nonlocal PDEs-based morphology on weighted graphs for image and data processing. IEEE Trans. Image Process. 20(6), 1504–1516 (2011)

    Article  MathSciNet  Google Scholar 

  40. Tari, S.: Hierarchical shape decomposition via level sets. In: Proceedings of the International Symposium on Mathematical Morphology. Lecture Notes in Computer Science, 5720. Springer, Berlin/New York (2009)

    Google Scholar 

  41. Vincent, L.: Graphs and mathematical morphology. Signal Process. 16(4), 365–388 (1989)

    Article  MathSciNet  Google Scholar 

  42. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free energy approximations and generalized belief propagation algorithms. IEEE Trans. Inf. Theory 51(7), 2282–2312 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros Maragos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maragos, P., Drakopoulos, K. (2013). Segmentation and Skeletonization on Arbitrary Graphs Using Multiscale Morphology and Active Contours. In: Breuß, M., Bruckstein, A., Maragos, P. (eds) Innovations for Shape Analysis. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34141-0_3

Download citation

Publish with us

Policies and ethics