Skip to main content

Distributed Bregman-Distance Algorithms for Min-Max Optimization

  • Chapter
Agent-Based Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 456))

Abstract

We consider a min-max optimization problem over a time-varying network of computational agents, where each agent in the network has its local convex cost function which is a private knowledge of the agent. The agents want to jointly minimize the maximum cost incurred by any agent in the network, while maintaining the privacy of their objective functions. To solve the problem, we consider subgradient algorithms where each agent computes its own estimates of an optimal point based on its own cost function, and it communicates these estimates to its neighbors in the network. The algorithms employ techniques from convex optimization, stochastic approximation and averaging protocols (typically used to ensure a proper information diffusion over a network), which allow time-varying network structure. We discuss two algorithms, one based on exact-penalty approach and the other based on primal-dual Lagrangian approach, where both approaches utilize Bregman-distance functions.We establish convergence of the algorithms (with probability one) for a diminishing step-size, and demonstrate the applicability of the algorithms by considering a power allocation problem in a cellular network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, A., Duchi, J., Wainwright, M.: Dual averaging for distributed optimization: Convergence analysis and network scaling. IEEE Transactions on Automatic Control (2011) (to appear)

    Google Scholar 

  2. Arrow, K.J., Hurwicz, L., Uzawa, H.: Studies in Linear and Non-Linear Programming. Stanford University Press, Stanford (1958)

    MATH  Google Scholar 

  3. Bertsekas, D.P.: Necessary and sufficient conditions for a penalty method to be exact. Mathematical Programming 9, 87–99 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsekas, D.P., Nedić, A., Ozdaglar, A.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)

    Google Scholar 

  5. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and distributed computation: numerical methods. Prentice-Hall, Inc., Upper Saddle River (1989)

    MATH  Google Scholar 

  6. Bertsekas, D.P., Tsitsiklis, J.N.: Gradient convergence in gradient methods with errors. Siam. J. Optim. 10(3), 627–642 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Billingsley, P.: Probability and Measure. John Wiley and Sons (1979)

    Google Scholar 

  8. Boche, H., Wiczanowski, M., Stanczak, S.: Unifying view on min-max fairness and utility optimization in cellular networks. In: 2005 IEEE Wireless Communications and Networking Conference, vol. 3, pp. 1280–1285 (March 2005)

    Google Scholar 

  9. Borkar, V.S.: Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press (2008)

    Google Scholar 

  10. Bregman, L.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics 7(3), 200–217 (1967)

    Article  Google Scholar 

  11. Censor, Y.A., Zenios, S.A.: Parallel Optimization: Theory, Algorithms and Applications. Oxford University Press (1997)

    Google Scholar 

  12. Chiang, M., Hande, P., Lan, T., Tan, W.C.: Power Control in Wireless Cellular Networks. Found. Trends Netw. 2(4), 381–533 (2008)

    Article  Google Scholar 

  13. Ermoliev, Y.: Stochastic quasi-gradient methods and their application to system optimization. Stochastics 9(1), 1–36 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ermoliev, Y.: Stochastic quazigradient methods. In: Numerical Techniques for Stochastic Optimization, pp. 141–186. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  15. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning. Springer (2003)

    Google Scholar 

  16. Jadbabaie, A., Lin, J., Morse, S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control 48, 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  17. Johansson, B., Rabi, M., Johansson, M.: A randomized incremental subgradient method for distributed optimization in networked systems. SIAM Journal on Optimization 20(3), 1157–1170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kar, S., Moura, J.M.F.: Distributed consensus algorithms in sensor networks with imperfect communication: link failures and channel noise. IEEE Tran. Signal Process. 57(1), 355–369 (2009)

    Article  MathSciNet  Google Scholar 

  19. Lobel, I., Ozdaglar, A.: Distributed subgradient methods for convex optimization over random networks. IEEE Transactions on Automatic Control 56(6), 1291–1306 (2011)

    Article  MathSciNet  Google Scholar 

  20. Mosk-Aoyama, D., Roughgarden, T., Shah, D.: Fully Distributed Algorithms for Convex Optimization Problems. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 492–493. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Nedić, A.: Asynchronous broadcast-based convex optimization over a network. IEEE Transactions on Automatic Control 56(6), 1337–1351 (2011)

    Article  Google Scholar 

  22. Nedić, A., Olshevsky, A., Ozdaglar, A., Tsitsiklis, J.N.: Distributed subgradient algorithms and quantization effects. In: Proceedings of the 47th IEEE Conference on Decision and Control, pp. 4177–4184 (2008)

    Google Scholar 

  23. Nedić, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Transactions on Automatic Control 54(1), 48–61 (2009)

    Article  Google Scholar 

  24. Nedić, A., Ozdaglar, A.: Subgradient methods for saddle-point problems. Journal of Optimization Theory and Applications 142(1), 205–228 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nedić, A., Ozdaglar, A., Parrilo, P.A.: Constrained consensus and optimization in multi-agent networks. IEEE Transactions on Automatic Control 55, 922–938 (2010)

    Article  Google Scholar 

  26. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. on Optimization 19(4), 1574–1609 (2008)

    Article  MathSciNet  Google Scholar 

  27. Polyak, B.T.: Introduction to Optimization. Optimization Software, Inc., New York (1987)

    Google Scholar 

  28. Rabbat, M., Nowak, R.D.: Distributed optimization in sensor networks. In: IPSN, pp. 20–27 (2004)

    Google Scholar 

  29. Ram, S.S., Nedić, A., Veeravalli, V.V.: Distributed stochastic subgradient projection algorithms for convex optimization. Journal of Optimization Theory and Applications 147(3), 516–545 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ram, S.S., Veeravalli, V.V., Nedić, A.: Distributed non-autonomous power control through distributed convex optimization. In: IEEE INFOCOM, pp. 3001–3005 (2009)

    Google Scholar 

  31. Sundhar Ram, S., Nedić, A., Veeravalli, V.V.: Asynchronous gossip algorithms for stochastic optimization: Constant stepsize analysis. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering, 14th Belgian-French-German Conference on Optimization (BFG), pp. 51–60 (2010)

    Google Scholar 

  32. Ram, S.S., Nedić, A., Veeravalli, V.V.: A new class of distributed optimization algorithms: Application to regression of distributed data. Optimization Methods and Software 27(1), 71–88 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Robbins, H., Siegmund, D.: A convergence theorem for nonnegative almost supermartingales and some applications. In: Rustagi, J.S. (ed.) Proceedings of a Symposium on Optimizing Methods in Statistics, pp. 233–257. Academic Press, New York (1971)

    Google Scholar 

  34. Srikant, R.: The Mathematics of Internet Congestion Control. Birkhäuser, Boston (2003)

    Google Scholar 

  35. Srivastava, K., Nedić, A.: Distributed asynchronous constrained stochastic optimization. IEEE Journal of Selected Topics in Signal Processing 5(4), 772–790 (2011)

    Article  Google Scholar 

  36. Srivastava, K., Nedić, A., Stipanović, D.: Distributed min-max optimization in networks. In: 17th International Conference on Digital Signal Processing (2011)

    Google Scholar 

  37. Stanković, S.S., Stanković, M.S., Stipanović, D.M.: Decentralized parameter estimation by consensus based stochastic approximation. In: 2007 46th IEEE Conference on Decision and Control, pp. 1535–1540 (December 2007)

    Google Scholar 

  38. Tsitsiklis, J.N.: Problems in decentralized decision making and computation. PhD thesis, Massachusetts Institute of Technology, Boston (1984)

    Google Scholar 

  39. Tsitsiklis, J.N., Athans, M.: Convergence and asymptotic agreement in distributed decision problems. IEEE Trans. Automat. Control 29, 42–50 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Srivastava, K., Nedić, A., Stipanović, D. (2013). Distributed Bregman-Distance Algorithms for Min-Max Optimization. In: Czarnowski, I., Jędrzejowicz, P., Kacprzyk, J. (eds) Agent-Based Optimization. Studies in Computational Intelligence, vol 456. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34097-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34097-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34096-3

  • Online ISBN: 978-3-642-34097-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics